

TradeRES

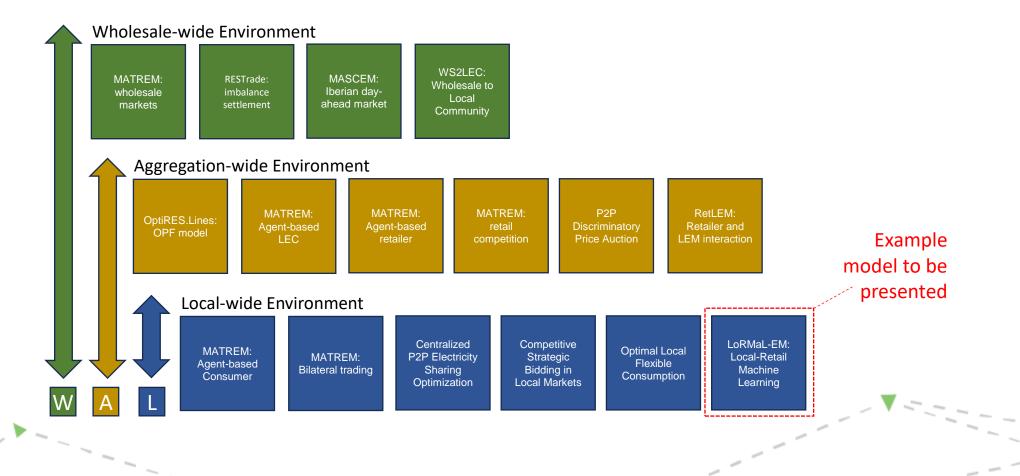
New Markets Design & Models for 100% Renewable Power Systems

Local Markets & Energy Communities

T5.2 Leader: <u>bitUnitor</u> **T5.2 Partners:** <u>Imperial College London</u>, LNEG, ISEP, bitUnitor

Final Webinar | November 2024

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 864276


- Overview
- Features & Methodologies
- Outcomes & Results
- Case study (Local-Retail Machine Learning)
- Blockchain for LEM
- Questions and comments

Local Energy Communities and Markets

- Review Existing Regulations, Schemes and Models
- Introduction of Simulations Environments

- Introduction of LMPIs (Local-Market Performance Indicators)
- Development of 16 sub-models for examining different aspects

Optimisation; Agent-based Modelling; Game-theoretical Approaches; Simulation models

Tariff Optimization and Cost Reduction

Features: Optimization techniques to select tariffs; Strategic retail tariffs;
Demand response programs to maximize savings and improve competitiveness
Models: MATREM Agent-based Consumer, RetLEM, MATREM Agent-based retailer

Investment in Local RES and Self-Consumption

- **Features**: Optimizing investments in local RES and Flex; Optimal power flow models; Effects of investments in networks
- Models: MATREM AB Consumer & LEC, Optimal Local Flex Consumption, OptiRES.Lines

Demand Response and Flexibility

Features: Time-of-Use vs. dynamic tariffs for load management; Centralization of LEMs to increase demand flexibility; flexible consumption to adjust with real-time pricing
Models: MATREM Agent-based Consumer, Optimal Local Flexible Consumption, RetLEM

Peer-to-Peer (P2P) and Bilateral Trading

Features: Bilateral trading protocols; centralized optimization for local P2P transactions, Pay-as-bid model for trading

Models: MATREM Bilateral Trading, Centralized P2P Electricity Sharing Optimization, P2P Discriminatory Price Auction

Features & Methodologies

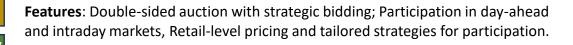
WS Market and DA Market Participation

W

Α

W

Features: Wholesale market interactions; DA trading for communities to leverage broader market participation; Exposure to aggregators to WSM price signals **Models**: MASCEM Iberian day-ahead market, WS2LEC


Local Resource Aggregation and Management

- **Features**: Aggregation of local resources; Coordination for strategic behavior; Communities to manage energy collectively; Coordinating local investments
- Models: MATREM Agent-based LEC, OptiRES.Lines, MATREM Agent-based retailer

Imbalance Settlement and Cost Computation

- **Features**: Imbalance settlement; Computation of community imbalance quantities and prices for accurate cost allocation and market stability
- Models: RESTrade

Strategic Bidding and Auction Mechanisms

Models: Competitive Strategic Bidding in Local Markets; MATREM Agent-based retailer, P2P Discriminatory Price Auction, MATREM wholesale markets, WS2LEC

Outcomes & Results

Electricity Cost Reduction

Achieves cost savings for consumers and prosumers through optimized tariff selection, local generation, or strategic market participation.

Enhanced System Flexibility

Increases the ability of the energy system to adapt to fluctuating demand and supply, often by leveraging demand-response programs and flexible consumption options.

Increased Social Welfare

Improves collective well-being by enhancing equity in pricing, increasing access to renewable energy, and distributing economic benefits more evenly among community members.

Higher Participation Benefits in Wholesale Markets

Allows LECs and smaller communities to benefit financially from engaging in wholesale and day-ahead markets, typically through aggregated bidding strategies that make participation feasible and profitable.

Cost Minimization for Prosumers

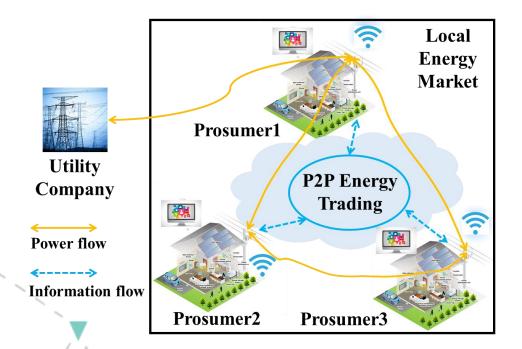
Reduces expenses for individual prosumers by optimizing energy usage and trading strategies within local or aggregation-wide markets, often through dynamic market mechanisms.

Reduction in Imbalance Costs

Decreases costs related to energy imbalances by accurately predicting, monitoring, and settling imbalance quantities, helping communities avoid costly imbalance penalties.

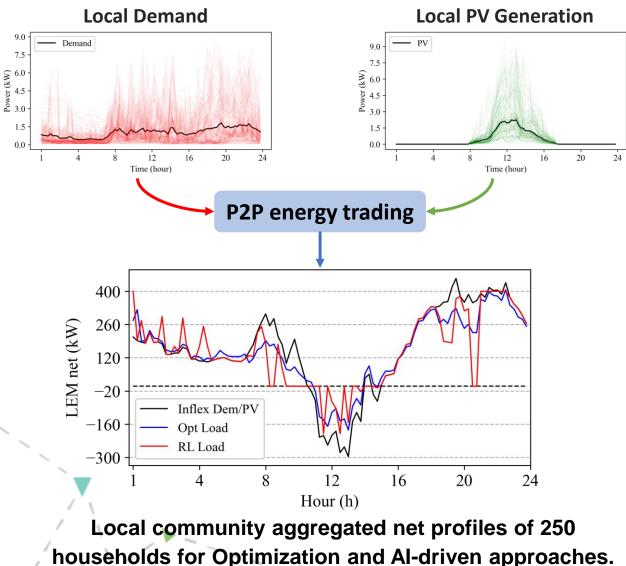
Improved Local Carbon Neutrality

Enhances the sustainability of local communities by increasing reliance on renewable energy sources, reducing carbon footprints, and supporting carbon-neutral goals.


Effective Market Competition

Establishes a competitive environment that promotes fair pricing and resource allocation by encouraging suppliers to offer competitive tariffs and services.

P2P Energy Trading


Peer-to-Peer (P2P) energy trading has emerged as a new market paradigm that enables direct and autonomous energy trading among prosumers within a local distribution level.

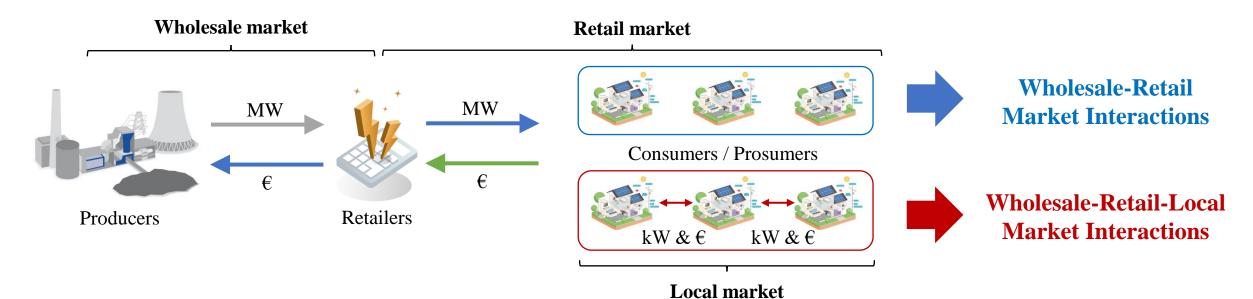
- Enhance coordination of prosumers' PV production and demand side flexibility, such as storage and electric vehicles.
- Balance local demand and generation, reduce aggregated demand peaks.
- Reduce energy customers' dependence on incumbent retailers.
- Form local trading and reduce energy costs.
- Avoid the distribution network reinforcement.

LoRMaL-EM: Dataset and Case Study

EU Residential Community Dataset:

- 250 households
- 250 demand, 200 PV, 150 Storage units

Case Study:


- More peak demand reductions at night.
- More PV absorptions at midday.
- Lower energy costs (2,527€).

Case	Strategy	Cost (€)
Optimisation	Static	2,625
Al-driven	<u>Dynamic</u>	<u>2,527</u>

RetLEM: Model Overview

A comprehensive market design to capture the dynamic interactions between the wholesale market, retail market, and local market – through a tri-level optimisation approach.



Upper level: market operator collects all bids and offers and solves a centralised market clearing algorithm.

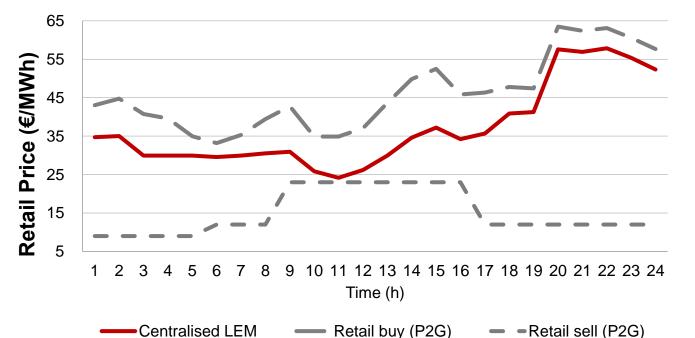
- Middle level: retailers announce strategic retail pricing scheme to maximise their retail profits.
- Lower level: all consumers and prosumers make <u>local trading activities</u> to reduce their energy bills.

RetLEM: Community Response

P2G: peer to grid – no local trading. LEM: local energy market.

The introduction of LEM reduces the dependence of end-customers on upstream electricity market.

Peer to Grid (P2G) Market – dash grey line


- All consumers have to buy electricity from the upstream retailer.
- All prosumers have to sell electricity to the upstream retailer.

Local Energy Market (LEM) – solid red line

- Demand and generation can be balanced locally.
- Only the remaining deficit or surplus will be traded with the upstream retailer.

RetLEM: Retail Pricing and Business Case

Market	Profit of Retailer (€)		Profit of Local Generation (€)
Peer-to-grid	220.85	99.97	5.80
Peer-to-peer	<u>94.64</u>	<u>187.88</u>	<u>86.27</u>

The introduction of LEM reduces retailer's market power and increases customers' social welfare.

Strategic Retail Pricing:

- The local market pricing is designed between the low retail sell price and the high retail but price.
- Retailer loses its profit due to the less business cases from end customers.
- Local demand increases its utility due to the lower local market price w.r.t. the high retail buy price.
- Local generation increases its profit due to the higher local market price w.r.t. the low retail sell price.

- Link to Dashboard: https://traderes-bc-app-mcmq7hsjpbhxudmvbve7hv.streamlit.app/
- Link to GitHub repository: <u>https://github.com/ocatak/TradeRES-BC-Portal/</u>

Blockchain for LEC

Proposes transactio

Checks if metering

4

Community battery

Propose

transaction

Power Company

Checks if sola

generation surplus matches stored amount

User Platform

Blockchai

- We have developed a Blockchain-based energy trading system for LEC
- The system is designed to demonstrate secure, transparent, and efficient energy trading.
- Utilizing Ethereum blockchain technology, this project introduces two main smart contracts: "EnergyExchange" and "EnergyToken"
- These contracts facilitate the production, consumption, and trading of energy tokens within a decentralized framework
- Energy consumption and PV data from Portugal (LNEG)

Link to Dashboard:

Link to GitHub

TradeRES Data Dashboard

Last Hour Balance

TradeRES

New Markets Design & Models for 100% Renewable Power Systems

Join at slido.com #2539 471

Questions or Comments? Ask & vote on Slido!

More information at: https://traderes.eu/

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 864276