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Executive Summary 
 

The present deliverable was developed as part of the research activities of the 

TradeRES project Task 4.4 - Enhancing the value of VRE on the electricity markets with 

advanced forecasting and ramping tools edition 2.  

This report presents the second edition of deliverable 4.9, which consists of the de-

scription and implementation of the forecasting models aiming to identify and explore the 

time synergies of meteorological effects and electricity market designs explored in the 

project to maximize the value of variable renewable energy systems and minimize market 

imbalances. 

An overview of key aspects that characterize a power forecast system is presented in 

this deliverable through a literature review. This overview addresses the: i) forecast time 

horizon; ii) type of approach (physical, statistical or hybrid); iii) data pre-processing proce-

dures; iv) type of forecast output; and v) the most common metrics used to evaluate the 

performance of the forecast systems.  

While in the TradeRES project work package 3 the conception of new market designs 

and products are presented from a theoretical point of view, in this deliverable, the power 

forecast tools capable to address the new designs and products are presented and dis-

cussed. Complementarily to the first edition of this deliverable, the link between day-

ahead market time frames and the performance of the different power forecast approach-

es is analysed. This second edition of D4.9 also focuses on the short-term forecasts (be-

low six hours) for new market designs.  

As a first step, a non-disruptive change in the day-ahead market is proposed by simply 

postponing the gate closure hour according to the meteorological data availability from the 

global numerical weather prediction (NWP) models while the 24 hours forecast periods 

are still used. In the second step, various short-term forecast approaches designed for 

time horizons below six hours are developed and implemented. These approaches are 

specifically tailored to attend the requirements of new electricity market designs currently 

under development in TradeRES.  

Another aspect regarding the meteorological time synergy and electricity markets ana-

lysed in this deliverable is the identification of extreme events. A wind power ramping 

forecast approach implemented in the TradeRES forecast tools is described. This ap-

proach is designed to complement the existing deterministic power forecasts and it can be 

used to increase the transmission system operators’ awareness level and helping them to 

better scale the level of reserve required. Market players can also take advantage of this 

information to strategically define the bids in the different market environments. 

Using different wind and solar power parks in Portugal, as well as the national aggre-

gated Portuguese and German wind and solar generation, results regarding the potential 

certainty gain effect from changing the day-ahead market gate closure are presented and 

analysed in this deliverable. Results showed that the use of the TradeRES forecast meth-

odology guaranteed better performance compared to an operational forecast from a fore-

cast provider. Additionally, the results emphasized the benefits of including non-traditional 

variables such as air pressure and temperature at different heights, atmospheric boundary 
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layer, and geopotential height for various pressure levels. The simulations also highlighted 

that incorporating both NWP features based on historical power series led to improvement 

when compared with models based solely on power series or NWP. Therefore, it is rec-

ommended that power forecast systems can have access to recent observed values to 

improve their accuracy.  

Despite the improvements achieved in the forecasts for the day-ahead market, high 

power forecast errors are still observed (a normalised root mean square error of nearly 

30% for wind and solar in Portugal and nearly 20% for Spain). Market designs with shorter 

forecast time horizons can significantly reduce power forecast errors. Results also em-

phasize the importance of evaluating the most suitable forecast approach based on the 

forecast time horizon. To assess the value of renewable energy forecasting for the Ger-

man day-ahead market, the Agent-based Market model for the Investigation of Renewable 

and Integrated energy Systems (AMIRIS) was enhanced to account for power forecast 

errors. For this purpose, a feature was developed that allows for the adjustment of fore-

casts for the feed-in of renewable energies using a Gaussian distributed error term. Fur-

thermore, this deliverable presents a realistic forecast time series that was implemented in 

AMIRIS. The case study of the German day-ahead market in 2019 demonstrated that re-

alistic power forecasts can reduce the profits of onshore wind turbine operators by approx-

imately 8% compared to perfect foresight of wind infeed. Assuming Gauss-distributed er-

rors, the losses are smaller (~ 5 % less profit compared to the perfect forecast). 

The power forecast tools developed in this task will be publicly shared and disseminat-

ed in the channels of the project. With this step, users can use the tools for obtaining 

power forecasts in future studies or use the approaches developed in TradeRES as a 

benchmark. 
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1. Introduction 

The present deliverable was developed as part of the research activities of the 

TradeRES project’s Task 4.4 - Enhancing the value of VRE on the electricity markets with 

advanced forecasting and ramping tools (work package 4). This report presents the sec-

ond edition of deliverable D4.9 which consists of the description of forecasting techniques 

implementation aiming to identify and explore the time synergies of meteorological effects 

and electricity market designs to maximize the value of variable renewable energy sys-

tems and minimize market imbalances. The initial edition of D4.9 concentrated on under-

standing the forecasting approaches available and proposed a new forecast approach for 

existing market designs. This second edition presents the results of approaches proposed 

applied to various case studies (at national and power plant levels) and it addresses new 

forecast approaches tailored to new market designs introduced in the project focusing on 

trading with a shorter lead time horizon (up to six hours).  

One of the most important challenges in the energy sector is the large-scale integration 

of renewable energy sources (particularly, variable renewable energy sources - vRES 

such as wind and solar) into electrical power systems in an economic and environmentally 

sustainable way. Transmission system operators (TSOs) must always ensure the balance 

between electricity production and consumption. Currently, a safe and robust operation of 

a power system needs highly accurate forecasts of both vRES power production and con-

sumption to minimize the need for balancing the energy in the reserve markets, typically 

at high costs [1]–[3]. With near to 100% renewable power systems, the role of the forecast 

system and its accuracy will be even more relevant. 

Forecasts are also important to electricity markets. To participate in the different prod-

ucts from electricity markets, market players/actors need to rely on forecast systems to 

build their bids. With the existing market designs, when power producers do not follow the 

scheduled bid, they are penalized and their profits are strongly decreased [4]. Due to the 

intrinsic chaotic nature of atmosphere, the participation of vRES players in the existing 

markets is still a challenge, especially, when long time horizon forecasts are needed. In 

work package (WP) 3 of TradeRES project the shortcomings and alternative designs for a 

near 100% renewable electricity system were addressed. For day-ahead market (DAM), 

which is the most used and with highest liquidity market, the authors of deliverable 3.5 [5] 

suggested a reduction of the time gap between the DAM closure hour and the forecast’s 

delivery time while keeping the current organization of wholesale electricity trade. Never-

theless, it is necessary to assess if the new gate closure’s timing are enough to reduce 

expressively the vRES power forecast errors, or if it is necessary to replace the existing 

designs [5]. Therefore, to design electricity markets that are adequate to vRES trading it is 

crucial to understand the capabilities of power forecast systems as well as how they work 

in order to i) identify potential new time frames for this specific market, ii) identify the play-

ers that have more challenges to participate in the existing DAM, and iii) develop the fore-

cast tools required for TradeRES project and the electricity markets for 2030 and beyond. 

According to the second edition of D3.5 from TradeRES project [6], an alternative to 

current market designs “is a shift towards more frequent trading, e.g., clearing the market 
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every hour for delivery six hours later”. This shift requires the adoption of new forecast 

models (e.g., autoregressive models) for vRES power. According to several authors, for 

this timeframe, these models typically surpass the performance of the NWP. Consequent-

ly, different forecast methods tailored to this new timeframe are proposed and analysed 

for different case studies. 

Another aspect regarding the synergy between meteorological timings and electricity 

markets refers to the identification of extreme events. Extreme events as wind power 

ramps usually have a significant impact on the electricity markets [7], [8]. In the case of 

wind power ramps, the early identification and forecasting of these events triggered by 

weather conditions can allow to raise the level of Transmission system operators’ (TSOs) 

awareness helping them to better scale the level of risk that exists for the power system 

[8] as well as commit additional reserves, to minimize operational risks. This information is 

designed to complement traditional time-series forecasts rather than replace them, ena-

bling, for instance, the dynamic allocation of necessary reserves. Market players can also 

take advantage of this information to participate strategically in electricity markets since, 

under these conditions, large vRES forecast errors in DAM are expected [8].  

Forecast of wind power ramps is a relatively novel research topic and the works al-

ready published highlight that the trigger mechanisms of such events are rarely similar 

across the control regions or wind parks [9]. Nevertheless, one of the most successful 

approaches to understand and forecast the dynamics of wind power ramps involves the 

use of holistic approaches capable of accounting the spatial and temporal development of 

atmospheric large-scale circulation [8], [10]. In [8], an automated cyclone detection algo-

rithm was implemented to identify challenging weather situations for the TSO. In [10], the 

authors also applied an automated cyclone detection algorithm and compared its perfor-

mance with a windstorm algorithm. The highest performance to detect wind power ramps 

is observed with the windstorm detection algorithm. Nevertheless, all the previous algo-

rithms have a common shortcoming: a wind power ramp is neither always a consequence 

nor it is always linked to the existence of extreme wind speed values, being essentially 

dependent from the previous (historical) state of the atmosphere. In this sense, a new 

algorithm that uses a time numerical differentiation to fit the particular case of wind power 

ramps events was developed and is presented in this deliverable. 

This deliverable is organized as follows: an overview regarding the power forecast sys-

tems is provided in section 2. In section 3, the link between electricity market periods and 

power forecast errors and source of information is discussed. Section 4 provides a contex-

tualization and description of various forecast approaches developed in the project. Sec-

tion 5 presents results using national wind and solar power data from Portugal, Spain, and 

Germany, along with data from several wind and solar power plants in Portugal. Section 6 

briefly presents some final remarks. 
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2. Power forecasts   

 The forecasting problem is transversal to several sectors of activity, such as financial, 

scientific, industrial, political, etc. In the energy sector, several systems have been devel-

oped in the recent years to predict the power output from wind or solar power plants as 

well as the electricity demand. Typically, forecast is conducted at a specific time, t, for a 

future time horizon, t+k. Despite advancements in forecast tools and approaches, the en-

ergy sector in European countries predominantly focuses on predicting the average pow-

er, Pt+k, expected to be provided to the grid at time t+k. In the literature, several classifica-

tions for the power forecast systems are available [11]. These systems can be classified 

according to the forecast time horizon and type of approach. In the next subsections, 

these classifications are addressed as well as some of the additional steps to implement a 

forecast system.  

It should be noted that this chapter provides a summary of approaches commonly ap-

plied in the energy sector aiming to highlight the different options available. This back-

ground is important to establish how to proceed to implement the forecast approaches 

most suitable to the different needs of the project. Comprehensive reviews are available 

for wind [1], [2], [11], [12] and solar photovoltaic (PV) [13]–[15] power forecasting. 

 

2.1 The forecasting process and objectives  

The forecasting process aims to transform one or more independent variables (inputs) 

into one or more dependent variables (outputs). This process is characterized by some 

key steps [16]:  

- Problem definition  

- Data collection  

- Descriptive data analysis  

- Forecast model selection 

- Model validation  

- Forecast  

- Performance evaluation  

Problem definition consists of evaluating the forecast period, forecast horizons and the 

time step of the outputs. The type of output needed and the establishment of admissible 

errors in the results are also established in this step. In the data collection phase, the vari-

ables under study (object of the forecast) and the independent variables necessary to 

build the forecast model need to be collected. For the descriptive analysis of the data, it is 

necessary, in the first place and when working with a time series, to take into account that 

successive observations are not independent events [17], and as such, the order of ob-

servations must be respected. According to [16], to obtain greater sensitivity of the data 

under analysis, they should be represented in the form of a temporal graph and a sum-

mary of some statistical parameters should be computed. This procedure makes possible 

to identify anomalies in the data, trends and seasonality that otherwise might not be evi-

dent.  
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After analysing the data, the forecasting method is applied. This task consists of choosing 

and adjusting one or more models to the specific case study, that is, reproducing the de-

pendent variable, depending on the independent variable (or variables), within a certain 

margin of error. The model selection should take into consideration aspects as the time 

horizon and the type of information expected from these models (deterministic, probabilis-

tic, or ramp event forecast). Once selected, the method must be validated. This validation 

is done by assessing the performance of the forecast. For this purpose, the method is 

normally adjusted to only a part of the available data, with the rest being used for its vali-

dation. Once validated, the method is implemented and its control is carried out continu-

ously by measuring the forecast errors (e.g., bias) to verify the continued validity of the 

method, and, if necessary, make all necessary updates to reduce the errors. 

 

2.2 Forecast time horizon 

The time duration for which the power output is forecast is known as the forecast time 

horizon. The forecast horizon of interest depends on the different applications, and in en-

ergy sector it can be divided into four main time scales: very short-term, short-term, medi-

um-term, and long-term [1], [18], [19]. The time frames of this classification can slightly 

change among the different authors. The application for the different time frames is de-

picted in Table 1.  

Table 1. Time horizon, temporal scale and common application of the forecast approaches [20]. 

Time 
horizon 

Temporal scale Applications 

Very 

short 

From seconds to 

30 minutes 

- Real-time dispatch and regulation operations on the network; 
- Forecasting the consumption of buildings in the context of micro-
grids; 
- Coordinating real-time demand response programs. 

Short 
From 30 minutes 

to 6 hours 

- Impacts on energy price determination in intraday markets;  
- Support decisions on the status of network loads;  
- Support the decision to turn-on or off the generator set with quick 
response; 
- Security operations for the energy market. 

Medium 
Varies between 6 

hours and 1 day 

- Support the decision to turn generators on or off;  
- Safety time horizon for the day-ahead market;  
- Impacts on energy price determination; 
- Allocation of power reserves. 

Long More than a day 

- Planning of maintenance operations;  
- Power system adequacy planning; 
- Strategic capacity planning. 

2.3 Type of approach 

In this section, the most common types of forecast approaches used in the energy sec-

tor are presented. Figure 1 illustrates the recommended sources of information and fore-

cast approaches based on their spatial and temporal horizons that will be further analysed 

in the next subsections. 

 



 

Page 13 of 69 

 

Figure 1. Recommended source of information/approach for solar and wind for the different time 

horizons and spatial resolution. Adapted from [21]. 

2.3.1. Physical approaches 

The physical power forecast approaches are mainly based on the use of numerical me-

teorological models – Numerical Weather Prediction (NWP), which parameterize and sim-

ulate in detail the atmosphere and its circulation mechanisms. NWP models provide me-

teorological parameters as wind components, cloud coverage, air temperature, and pres-

sure, that are used to generate forecasts. 

This type of model is being developed since 1950 when NWP models were used to 

make weather forecasts with time horizons on the scale of days. They were, however, 

very primitive models based on quasi-geostrophic theories where it was impossible, either 

due to lack of knowledge or lack of computational resources, to include relevant physical 

processes (radiation processes and phase transition) to make reliable predictions [22]. 

Over the years and with substantial technological improvement, these models and the 

parameterizations that govern them were improved and the relevant physical processes 

missing were progressively added. Currently, these models are still the core of weather 

forecasting and have evolved substantially following the growing knowledge regarding the 

physical processes that govern the atmosphere dynamics and its circulation as well as the 

computational capabilities.  

NWP models are, nowadays, less simplistic and with more detailed and precise physi-

cal parameterizations. Additionally, these models benefited from more efficient and repre-

sentative data acquisition and assimilation systems around the globe, which include me-

teorological stations, satellite data, radiosondes and measurements performed by air-

planes and ships. All these improvements have led to a significant decrease in the fore-

cast errors in the recent years, as reported for the operational European Centre for Medi-

um-Range Weather Forecasts (ECMWF) model, Figure 2. This figure also highlights that 
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the errors are significantly higher for a time horizon of five-days compared to one-day 

time-horizon.  

   
Figure 2. ECMWF forecast performance. Monthly wind speed root mean square error (RMSE) 

at 850 hPa for one-day (blue) and five-days (red) time horizon forecast. Bold lines represent a 12-
month moving average of the results (figure extracted from [23]). 

 

There are two major groups of NWP models: global models (grid covering all the Earth) 

and regional/mesoscale models (also known as limited area models) [24]. The main dif-

ferences between these two groups are related to the spatial and temporal resolution of 

the model, the geographical area covered and the time horizon. Moreover, region-

al/mesoscale models are calibrated using physical parameterization for specific regions 

which can reduce the forecast errors. These differences will have a significant impact on 

forecast accuracy and computational effort [24]. Table 2 characterizes the spatial and 

temporal resolution of some of the existing global and mesoscale/regional model.  

To overcome certain limitations inherent in global models characterized by low spatial 

and temporal resolutions, regional/mesoscale models can describe the behaviour and 

evolution of air masses, explicitly addressing atmospheric phenomena that require high 

spatial and temporal resolutions. Therefore, most of power forecast systems use a cou-

pled approach by feeding the regional models with initial and boundary conditions (IBC) 

gathered from the global models. Numerical mesoscale/regional models always need to 

be forced with IBC at the limits of their domains (boundary, surface, and top of the do-

main), Figure 3. These IBC can be historical data from reanalysis projects (used to pro-

duce wind or irradiance atlases for example) or by operational global forecasts projects 

(as GFS). 
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Table 2. Example of global and regional models available. Adapted from [24]. 

Type of 

model 
Provider Model  

Temporal 

resolution 

(hour)  

Horizontal 

resolution 

(aprox. km) 

Runs per 

day (UTC) 

G
lo

b
a
l 

European Centre 
for Medium-Range 
Weather Forecasts 
(ECMWF) 

Integrated Forecast-
ing System  

1 10 
4 (00, 06, 12 

and 18) 

Canadian Mete-
orological Centre 

Global Deterministic 
Prediction System  

3 25 2 (00, 12) 

National Centers 
for Environmental 
Prediction 

Global Forecast 
System (GFS) 

3 25 
4 (00, 06, 12 

and 18) 

Deutscher Wetter-
dienst 

Icosahedral Nonhy-
drostatic  

1 13 
4 (00, 06, 12 

and 18) 

R
e
g

io
n

a
l 

Deutscher Wetter-
dienst 

Consortium for 
Small-scale Model-
ing  

1 2.8 
8 (00, 02, …, 
18 and 21) 

Finnish Meteoro-
logical Institute 

High Resolution 
Limited Area Model  

1 7.5 
4 (00, 06, 12 

and 18  

  
Weather Research 
and Forecasting 
(WRF)

1
 

Defined by 
user (< 1 

hour) 
 

Defined by 
user (< 5 km) 

User specific 
(but limited to 
the global 
model availa-
bility) 

 

 

Figure 3. From global to mesoscale/regional numerical models (figure extracted from [25]).  

                                                                            

 
1 Example weather forecast providers using WRF model: Climetua (http://climeua.fis.ua.pt/weather) and Me-

teoGalicia (https://www.meteogalicia.gal). 

http://climeua.fis.ua.pt/weather
https://www.meteogalicia.gal/
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Despite the improvement observed in NWP models, these models still present system-

atic errors partly explained by the: 1) inadequate model’s physics parametrizations; 2) 

inability to handle sub-grid scale phenomena; 3) stochastic behaviour of the atmosphere 

and 4) uncertainty on IBC [24], [26]. Additionally, these models lack on the direct use of 

historical weather data to refine the underlying model. Although it is a very recent topic 

and, therefore, not included in the work developed in the TradeRES project, machine 

learning-based weather prediction (MLWP) models are nowadays emerging as an alterna-

tive to traditional NWP [27]. These models provide forecasts using historical data, includ-

ing observations and analysis data using machine learning approaches. MLWP shows 

promise in improving forecast accuracy by capturing data patterns not easily represented 

in explicit equations. Additionally, MLWP offers opportunities for greater efficiency by ena-

bling the use of modern deep learning hardware and achieving more favourable speed-

accuracy trade-offs, as opposed to relying solely on supercomputers.  

Recently, MLWP has proven effective in enhancing predictions in areas where tradi-

tional NWP is relatively weak, such as sub-seasonal heatwave forecasting and precipita-

tion nowcasting from radar images. One example of MLWP is the GraphCast that outper-

forms the results from NWP [27]. This model operates by taking the two most recent 

states of Earth's weather, the current time and six hours earlier, as input and predicting 

the next state six hours ahead. Each weather state is represented by a 0.25° lati-

tude/longitude grid (721 × 1440), translating to roughly 28 × 28 kilometre resolution at the 

equator. Like traditional numerical weather prediction systems, GraphCast is autoregres-

sive, allowing it to generate an extended trajectory of weather states by feeding its own 

predictions back as input.   

The precision of the results of NWP models increases proportionally to the number of 

data assimilated in these models, as well as the quality of these same data [24]. At the 

current stage of NWP, the model’s parameterization and the spatial resolution from these 

models are unable to simulate some local effects as the exact location and extent of cloud 

fields in the case of solar power forecast. To properly account for these effects and correct 

the outputs from NWP, downscaling techniques can be applied to correct the data provid-

ing location-specific forecasts [28], [29]. Thus, downscaling consists of applying further 

methods to enhance the data extracted from the NWP with local/regional effects. This 

process can be performed through various statistical methods that establish relationships 

between local variables (such as wind speed) and variables with large-scale characteris-

tics (such as pressure fields). Another possibility is the use of other physical approaches 

that varies according to the type of technology under consideration. Below, some exam-

ples of downscaling physical approaches for the wind and solar power cases are provid-

ed. 

 Wind power 

Microscale models: This type of model allows working with high spatial resolutions (up to 

10 – 30 meters). With the growing need to estimate accurately the wind resource for dif-

ferent applications, new models for simulation of wind flow were developed. These models 

can be classified into linear and non-linear [30]. Linear models as the Wind Atlas Analysis 

and Application Program software have the advantage of low need for computing re-

sources and it enables to evaluate, with reasonable accuracy, the wind resource for flat 
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orography with small elevations, i.e., under non-complex terrain conditions [22]. However, 

these models tend to, e.g., miscalculate the wind speed behaviour in the lee side of the 

hills [30]. Therefore, these models are unsuitable for complex terrain. The advances in 

numerical modelling together with the increase in computational capabilities enabled the 

development of non-linear models in the flow simulation industry and in the assessment of 

wind potential. Among these non-linear models, in the wind sector, computational fluid 

dynamics (CFD) models stand out enabling to increase the accuracy of wind potential 

assessments, especially in complex terrain [31]. Results from several authors highlighted 

the benefits of this model against the linear models [32]. These benefits are derived from 

the inclusion of thermal effects in the vertical stratification of the CFD simulations. This 

type of approach was explored in [33] showing higher performance when compared to a 

traditional statistical approach, especially for periods with high or low energy levels and in 

the ascending wind power ramps. 

Conversion to power: This type of approach is based on the power curves from the 

wind turbine manufacturers/or estimated based on historical wind speed and power data 

to determine the power from the wind turbine or park [34]. Typically, the historical power 

curves of wind turbines/parks are defined as a function of additional parameters, such as 

wind direction to account for physical features (e.g., wake effect of wind turbines, air den-

sity and terrain) in surrounding regions [34]–[36]. Based on the results of the NWP, name-

ly, the wind speed and direction for the hub height of the wind turbine, the power curves 

are applied, and the forecast is obtained. This type of approach is the most common dur-

ing the initial periods of wind park operation where there is no historical data. 

Figure 4 presents the main steps commonly applied to obtain the physical-based wind 

power forecast. 

 

 

Figure 4. Main steps applied in the physical wind power forecast approaches. Orange arrows 

represent alternative approaches that can be used. 
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 Solar power 

Cloud and all-sky imagery: In addition to the daily cycle, the other factor with the great-

est impact on ground-level solar irradiation and, consequently, on solar production is the 

cloud cover [37]. This parameter presents a high variability that can be induced by local 

effects, which are not always correctly described by NWP. In recent years, models that 

forecast cloud cover from images from the sky taken from all-sky cameras or by artificial 

satellites have been developed. The all-sky cameras, installed at ground level, allow to 

obtain images of the sky, being very useful for very short and short-term forecast time 

horizons due to the reduced field of view of the camera [38], [39]. On the other hand, 

through satellites, it is possible to obtain images with a wide field of view, but with lower 

spatial and temporal resolution. In this sense, information obtained through satellites is 

more suitable for short and medium-term forecasts [40]. Regardless of the source of in-

formation (cameras or satellite), this type of approach uses algorithms that identify cloud 

coverage patterns between sequential images. The information from the images can be 

transformed, for instance, into cloud motion vectors, enabling to determine the move-

ments (intensity and direction) of individual clouds [41]. This information regarding the 

cloud cover can then be used in different ways: i) correct the NWP outputs, or ii) apply 

semi-empirical models to obtain ground level solar irradiance.   

The use of these models is crucial for weather-dependent generation technologies as 

wind and solar power forecast. Nevertheless, the outputs from these models are also 

used by several authors to improve the load forecast for short- and medium-term forecast 

horizons [42]. 

2.3.2. Statistical and machine learning approaches  

To overcome the inefficiencies of the physical methods described above and, at the 

same time, obtain operational forecasts with adequate precision to manage the variability 

of vRES, several statistical approaches have been developed. This type of forecasting 

approaches relies on historical time series data. More precisely, this type of approach 

seeks to establish relationships between historical data series with what is currently ob-

served, at the instant for which the forecast is to be made. Despite the constant emerging 

of new forecast techniques that require deep mathematical knowledge, compared to phys-

ical forecasting methods, this type of method presents reduced complexity and is less 

costly (whether in terms of time or resources) since the physical processes are not explic-

itly treated. Within the statistical models, three distinct methods are usually considered: 

persistence, time series modelling, and machine learning methods.  

Persistence methods: Persistence-based forecasting methodology is the most basic 

and simplest statistical forecasting methodology to be implemented. Despite belonging to 

the group of statistical approaches, it is often addressed separately since it is considered 

as reference, or benchmark. In this sense, to study the feasibility of implementing new 

forecasting systems must be compared with the results achieved by the persistence 

method. Only methodologies that present more favourable results than those generated 

by persistence are considered suitable for implementation. The persistence method as-

sumes that the wind/solar power or electricity demand, remains equal, at a future instant, 
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to the value observed at the instant for which a forecast is made. If the power, at time t, is 

given by 𝑝𝑡, then the power at the future time, t+k, will be given by:  

𝑝𝑡+𝑘 = 𝑝𝑡 (1) 

where ∆𝑡 corresponds to the time interval for which the forecast is to be performed. For 

very short forecast time horizons (as presented in Table 1), this model provides results, on 

average, with some accuracy. However, and as expected, due to the vRES variability for 

long forecast time horizon the accuracy of this methodology decreases. In the case of 

time series characterized by substantial fluctuations in production, such as those ob-

served in wind parks situated in areas with complex terrain, the accuracy of this method 

may be diminished, even when forecasting for very short lead times. 

 Methods based on time series modelling: For very short and short forecast time hori-

zons (Table 1), there is the possibility, with a certain degree of reliability, to use methods 

based exclusively on the statistical analysis of time series of real data. Specifically, this 

type of methodology tries to establish the relationship between a historical series of pro-

duction or demand data, and its value at the instant for which the forecast is to be made, 

in order to obtain predictions for the following time steps. Unlike physical models, in this 

type of forecasting methodology, only one step is needed to convert the input data into 

output data. Some of the most common statistical methods used in power forecasting are: 

the autoregressive (AR), moving average (MA), autoregressive moving average (ARMA), 

autoregressive integrated moving average (ARIMA), the Box-Jenkins methodology, and 

the use of Kalman filters [1], [43].  

Machine learning methods: Machine learning (ML) or “black-box” [44] are models es-

sentially characterized by the capacity for self-learning through experience and training, 

i.e., ML offers the computational capacity to learn from the past information without explicit 

programming. As such, ML algorithms present the possibility of learning and making pre-

dictions on a set of data in an unexplicit way without following a set of static statistical 

learning instructions. The process of a self-learning model includes a few steps.  

Firstly, it is necessary to obtain data referring to the past for a training phase. Secondly, 

a relationship between the input and output data desired through a target function need to 

be defined. The third step is to choose the self-learning model. Then, this type of method 

undergoes a training process, using the set of data and previously determined examples. 

In most cases, this type of methodology generally presents the best forecast results. 

However, the implementation of these methodologies has the disadvantage that it is not 

possible to describe completely the relationship between the elements of the model, i.e., it 

is not possible to describe or understand the relationships found by these models between 

the input variables and the output variables [45]. Nevertheless, for a comprehensive un-

derstanding of ML results, explainable artificial intelligence techniques (XAI), such as fea-

ture importance analysis can be used. The selection of XAI is partially related with the 

specific ML model employed [46] but all the techniques aim to increase the transparency 

and interpretability of the results, by, for instance, quantifying the importance of each input 

feature in the model [46], [47]. 
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 Among the methods of this group, the artificial neural networks (ANN) are one of the 

most used in power forecast systems due to their simplicity and efficiency. One of the dis-

advantages of statistical methods as multiple linear regression lies in the inability to deal 

with the occurrence of events with distinct patterns within the time series, namely, the dis-

tinction between weekly, weekend and special days (e.g., holidays). ANN-based methods, 

on the other hand, can accept these characteristics as an independent variable and mod-

elling implicit non-linear relationships between the forecast variable and the variables that 

affect it.  

Various machine learning techniques frequently employed in power forecasting sys-

tems include: Random Forest (RF) [48], support vector machine (SVM), XGBoost [49] and 

LightGBM [50]. Random Forest is an ensemble of decision trees that effectively address-

es complex relationships and overfitting. It utilizes bootstrap sampling and feature subsets 

to create multiple trees, combining their predictions for enhanced reliability. It is always a 

trustworthy algorithm because it offers good accuracy and feature insights but may be 

slow on larger datasets and require tuning. SVM constructs a hyperplane that best fits the 

data, aiming to minimize the difference between actual and predicted values. Its strength 

lies in its flexibility to handle both linear and non-linear relationships using kernel func-

tions. Despite this versatility, the choice of the appropriate kernel can significantly impact 

model performance. SVM might not perform well on very large datasets due to its compu-

tational complexity. XGBoost is a gradient boosting algorithm that combines weak learn-

ers, typically decision trees, to create a strong predictive model. It optimizes an objective 

function by iteratively adding trees that correct the errors of previous iterations. Ad-

vantages include handling missing values and feature selection, ability to capture complex 

interactions, and regularization techniques to prevent overfitting. However, it demands 

careful hyperparameter tuning and might be computationally intensive for large datasets. 

LightGBM is an advanced gradient boosting algorithm. It constructs decision trees, em-

phasizing optimal splits grounded in features that yield significant reduction in the objec-

tive function. This strategy enhances efficiency by prioritizing informative features during 

initial tree development. LightGBM effectively manages extensive datasets through its 

refined tree growth approach, leading to reduced memory usage.  

Table 3 resents a list of the most common statistical and learning approaches and their 

advantages/disadvantages.  
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Table 3. Characteristics of the most common forecasting methods [18], [51], [52]. 

Forecasting 
method 

Advantages Disadvantages 

Linear Re-
gression  

Simplicity;  
You can use only one (Single) or several 
(Multiple) independent variables. 

Only capture relationships between 
linearly correlated variables; 
Sensitive to extreme values (outliers);  
Variables used in forecasting must be 
linearly independent. 

Time Series 
Analysis 
(Box-
Jenkins)  

Adaptable, there are many versions of the 
method and it has already been exten-
sively studied;  
Able to deal with seasonality and non-
stationarity. 

Requires only historical data for the 
series; 
Unlikely to perform well in long-term 
forecasting; 
It is computationally demanding to esti-
mate model parameters. 

K-nearest 
neighbour 
(KNN) 

It is relatively simple to understand and 
implement; 
It does not need a training phase, making 
its prediction based on observed histori-
cal values; 
Non-parametric approach no assump-
tions regarding the distribution of the var-
iables to be predicted is assumed. 

Requires an extensive period of histori-
cal data; 
Computationally demanding for large 
datasets. 

Artificial 
Neural 
Networks  

It is not necessary to know the relation-
ship between dependent and independ-
ent variables;  
Capable to deal effectively with non-linear 
relationships; 
Capable to deal with the presence of 
noise in the dataset without significantly 
affecting the forecast result. 

It is computationally demanding to train 
the neural network; 
Requires a large amount of historical 
data from independent variables; 
Do not result in a mathematical model 
with physical meaning. 

Support 
Vector Ma-
chine 

Adjustment of the adjustment parameter 
of the objective function helps to avoid 
over-fitting the training data (over-fitting);  
Use of the kernel trick, which maps the 
variable space to a non-linear vector 
space, allowing to capture non-linear 
relationships more efficiently. 

It is difficult to define a “good” kernel 
function; 
Computationally demanding for large 
datasets. 

Random 
Forest 

Handles non-linear relationships and 
interactions well; 
Provides feature importance for interpret-
ability of the results. 

Computationally intensive for large da-
tasets; 
Requires very carefully tuning of hyper-
parameters. 

LightGBM 

Efficient gradient boosting framework, 
optimized for speed and performance; 
Handles large datasets efficiently; 
Capable of handling non-linear relation-
ships.  

Requires parameter tuning for optimal 
performance; 
May be sensitive to outliers. 

XGBoost 

Effective handling of missing data and 
outliers.  
Ability to capture complex interactions, 
and regularization techniques to prevent 
overfitting. 

Sensitive to overfitting, requires pa-
rameter tuning;  
Computationally demanding for large 
datasets. 
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Figure 5 depicts an example of the main steps used to apply statistical forecast ap-

proaches. As can be seen in the figure for the case of wind power forecast typically only 

wind speed or/and power historical data are needed.   

 

 

Figure 5. Example of the main steps applied in the statistical forecast approaches for wind pow-

er applications.  

2.3.3. Hybrid approaches 

Hybrid power forecast models are models that combine two or more models of similar 

or different nature [45]. The genesis of such approach results from the combination of 

both statistical and physical models. The time scales applicable to forecasting methods 

can also be different because it is possible to join methods whose forecast horizon is dif-

ferent. Hybrid models can be constituted by linear and a non-linear models to analyse the 

respective linear and non-linear components of the time series of data or it can be the 

combination of models with different source of information. Hybrid methods can be cate-

gorized into four different classes: 

 I. Weight-based methodologies: These methodologies are based on assigning weights 

to the various forecast models used according to their performance. It is a simple method-

ology, easy to implement and has the advantage of adapting to new datasets. It is a suita-

ble methodology for a wide range of forecast time horizons. However, this does not guar-

antee the best forecasting efficiency for the entire forecasting time horizon and has the 

need for an additional model to assign the weights.  

II. Methodologies based on the combination of different forecast approaches: the pre-

diction is performed via the combination of different types of approaches (combine physi-

cal with statistical approaches). This type of methodology presents a robust behaviour due 

to the sudden, nature of the vRES generation wind speed. Therefore, it is possible to ob-

tain high forecasting efficiencies. However, this type of methodologies has the disad-

vantage of requiring the user to understand the complex mathematical model that per-

forms the data decomposition and the absence of a dynamic behaviour in the sense that 

the use of new data series, or the updating of the same, may result in a slow response of 

the methodology.  

III. Methodologies based on optimization techniques and parameter selection: These 

methodologies are based on the optimization of the forecast model parameters – mete-

orological parameters such as temperature, wind speed and direction, precipitation, 

Power

Speed Statistical
models

Wind 
power

Historical data
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among others. Despite providing the user with a greater understanding of the impact of 

different parameters on forecasting effectiveness, this approach is difficult to implement. 

 IV. Methodologies based on post-data processing techniques: These methodologies 

are based on a post-processing of forecast data. More specifically, this approach studies 

the impact of residual errors in the forecasts obtained, through the forecast models used, 

on the overall effectiveness. The effectiveness of forecasts considerably increased com-

pared to other approaches. However, due to the need to calculate residual errors, compu-

tational and temporal resources required are much higher than those needed for the other 

approaches presented. 

Figure 6 provides the main steps typically applied in hybrid power forecast approaches. 

Comparing with the previous approaches, it includes both NWP and historical data to feed 

the statistical models. As discussed in this section, for this type of approach different 

combinations can be used in the power forecast systems. 

 

 

Figure 6. Main steps applied in the hybrid wind power forecast approaches based on a combi-

nation of different forecast approaches.  

2.4 Data pre-processing 

Before applying statistical forecasting methods, it is common to apply pre-processing 

procedures to the data under analysis  [18], [53]–[55]. The most common types of pre-

processing are data cleaning, integration, transformation, and dimensional reduction. 

These treatments can be used in various combinations or alone. Data cleaning consists of 

removing or modifying values from incorrect values and entering missing values. Integra-

tion consists of combining data from different sources. The transformation consists, for 

example, in normalizing the data to scale them on a predefined range (e.g., [0, 1]) or in 

transforming a value recorded every 15 minutes into an hourly average.  

Dimensional reduction consists of reducing the number of existing variables. This re-

duction can be done, for example, through principal component analysis (PCA), discrimi-

nant analysis, empirical mode decomposition or wavelet analysis [56]. In PCA, an orthog-
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onal transformation is applied to convert the data into a set of values of linearly uncorre-

lated variables designated as principal components (PCs) [57]. With this procedure, the 

number of PCs generated in the process is always equal to or less than the number of 

original variables. The transformation applied with this technique allows the first PC to 

explain the largest possible variance, i.e., this PC characterizes the maximum possible 

variability observed in the data. With the restriction that it is orthogonal, the subsequent 

PC has the greatest possible variance that was not explained by the previous one. The 

process continues until the number of PCs became equal to the number of original varia-

bles. The resulting vectors enable to obtain an uncorrelated orthogonal basis set and they 

are used to feed the statistical forecasting techniques. 

Another type of approach to reduce the data dimension is the application of feature se-

lection algorithms [56]. The selection of the most relevant features aims to remove insig-

nificant entries in the forecasting models allowing to reduce model complexity as well as 

computational costs [58]. These methods can be classified into three different types [55], 

[58]: filter, wrapper, and embedded. The filter methods remove the less significant varia-

bles a priori, and then a model is created with the remaining features. Variables are elimi-

nated with a criterion such as Pearson correlation. The wrapping methods involve the en-

tire training algorithm in the variable selection process. The algorithm runs with several 

iterations (as many as there are variables) of the model by adding (or removing) variables 

and evaluating the performance of the model obtained. For the construction of the final 

model, the variables that enable to improve the result are kept and the rest discarded. 

Embedded methods introduce the variable selection process directly into the training pro-

cess, in order to avoid the complete search that happens in wrapped methods, thus re-

ducing computational complexity [59]. Additionally, combinations of these methods can be 

created, giving rise to the so-called hybrid methods. All these techniques aim to ensure 

the robustness of the data, also bringing benefits in improving computational efficiency.   

Another type of pre-processing is the decomposition and classification of data by clus-

tering [56]. Decomposition, in the context of the analysis of electricity demand forecast 

refers to the data separation according to the seasonal, weekly, and special days (holi-

days) effects. For the vRES case, this classification can refer to the so-called weather 

regimes (WR) types [60] or target-circulation types (TCT) [61]. The WRs allow to reduce 

the complexity of meteorological variability while enabling the identification of daily recur-

rent patterns in the climate system (top-down approach). On the contrary, TCT are de-

rived from the power system's weather response (down-top approach), which can be the 

vRES generation [62]. 

2.5 Forecast output: deterministic, probabilistic, or ramp events 

The initial focus of power forecast systems was to provide deterministic information, i.e., 

a value for each time step of the temporal horizon. Famous statistical methods are ARMA, 

ARIMA, Kalman filtering and Gaussian mixture models [44], [63], [64]. Other robust statisti-

cal approaches include ANN, KNN among others [65]–[67], as discussed in the previous 

subsections. Deterministic forecast approaches do not include information regarding its 

uncertainty in the expected value, which can be very a very useful information for utilities or 
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for specific market players enabling the definition of strategic bidding [68]. The need to 

characterize and assess the uncertainty in the vRES power forecast to better integrate it in 

decision-making processes led to the development of various probabilistic forecasting 

techniques [69]–[73]. Probabilistic forecasts can allow: i) increase the revenues of market 

players within the electricity environments, e.g., [74], [75], and ii) suitable reserve allocation 

[76].  

Broadly speaking, the probabilistic forecast allows to obtain probability density functions 

(PDF) for a specific time providing an interval of uncertainty of future events. The PDF can 

be achieved using physical approaches (e.g., NWP ensembles [77], [78]), statistical, or the 

combination of both. As described in [77], NWP ensembles forecasts are computationally 

demanding when compared with statistical methods. Power forecast uncertainty using sta-

tistical/hybrid models can be attained by calculating their distribution parameters based on: 

i) nonparametric regression assumptions as quantile regression [71] and kernel density 

estimators [79], [80], or ii) upon historical analogous [81]–[83] or iii) parametric distribution 

assumptions.  

Ramp events refer to the significant changes of power output in a short period. Thus, 

the importance of the detection of severe power ramps for TSOs lies on the necessity to 

control conventional power plants to balance those ramps to ensure the stable operation of 

the power system. Contrary to deterministic and probabilistic forecast that provide time-

series, this type of forecast provides binary information: existence or not of a power ramp 

[84]. This information should be integrated into the existing forecasting systems as an addi-

tional feature, but cannot substitute the existing forecasting systems [8]. Thus, the main 

potential benefit of power ramps forecast is to alert the TSO regarding the presence or ab-

sence of power (rapid) ramp events. This information enables the TSO to proactively allo-

cate additional reserves, ensuring the safety and robustness of the power system under 

various meteorological conditions [8], [57].  

Figure 7 schematically represent the different forecast outputs for deterministic, proba-

bilistic and power ramp event cases, 

 

 

Figure 7. Different forecast outputs: a) deterministic (green point), b) probabilistic (green points), 

and c) ramp events (red background represents periods with severe power ramps and green back-

ground represents periods where power ramps are not expected).  
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2.6 Metrics to evaluate the performance of the forecast 
approaches   

There is no single metric that can describe or measure the performance of a forecasting 

methodology. In existing literature, some new deterministic and probabilistic metrics have 

been proposed in the last years [85]. Nevertheless, most of them are not being adopted to 

energy sector being difficult to place the results among the values found in the literature. 

Taking into account this aspect, the following metrics will be used in TradeRES project to 

access the accuracy of time-series forecast - normalized bias (NB), RMSE or the normal-

ized RMSE (NRMSE), the Pearson correlation coefficient (r) and the average value of the 

absolute forecast deviation (𝐹�̂�): 

𝑁𝐵 =  

1
𝑇

 ∑ 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡) − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡)𝑇
𝑡=1

𝑁𝑜𝑚𝑖𝑛𝑎𝑙𝑃𝑜𝑤𝑒𝑟
 

(2) 

 

𝑅𝑀𝑆𝐸 = √  ∑ (𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡) − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡))
2𝑇

𝑡=1

𝑇
 (3) 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑁𝑜𝑚𝑖𝑛𝑎𝑙𝑃𝑜𝑤𝑒𝑟
 (4) 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

  ∑ 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡)𝑇
𝑡=1

𝑇

 (5) 

 

𝑟 =  
∑ (𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡)−𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡)−𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

√∑ (𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡)−𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
2√∑ (𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡)−𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

2
  

(6) 

𝐹�̂� =
1

𝑇
 ∑

|𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡) − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡)|

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝑡)

𝑇

𝑡=1

 (7) 

𝑁𝑜𝑚𝑖𝑛𝑎𝑙𝑃𝑜𝑤𝑒𝑟 corresponds to the total nominal power of the control region or vRES 

power parks under analysis.  

The bias corresponds to systematic error present in the forecast. This metric denotes an 

average error value for the forecast time horizon allowing to assess whether the forecast-

ing methodology tends to underestimate or overestimate comparing with the observed 

values. Ideally, a bias is sought, for the time horizon, as close as possible to zero.  

RMSE allows to identify the variation of amplitude errors, due to the squared nature of the 

differences. NRMSE, as aforementioned discussed, normalizes the RMSE for an easily 

comparison between different forecast approaches. In the existing literature, normalization 

can be performed by dividing the RMSE either by the nominal power (4) or by the average 

of the observed wind power production values (5), as employed in the results presented in 

this deliverable. The perfect score of the last two metric is also zero.  

The correlation coefficient (6) measures the similarities between the obtained forecasts, 

for a forecast time horizon, and the observed value for the same time horizon. This coeffi-

cient varies between [-1 1]. A value close to zero means poor predictions, and the unit 

value represents perfect predictions. A value close to -1 means that the forecast is in 
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phase opposition. The average value of the absolute forecast deviation (7) allows to illus-

trate the mean forecast deviation in relation to the observed power.  

When needed, to quantify the improvement of using the forecast methods proposed in 

TradeRES project, the approach followed in [83] is used for each metric:   

𝜀(%) =  (1 −
𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑇𝑟𝑎𝑑𝑒𝑅𝐸𝑆

𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘
) × 100 (8) 

where 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑇𝑟𝑎𝑑𝑒𝑅𝐸𝑆 represents the results of a specific metric using the forecast 

method implemented in TradeRES project, and 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 represents the forecast 

results for the benchmarking approach (that will be defined according to each case study). 

A positive 𝜀 value indicates an improvement of the proposed forecast method. A negative 

value corresponds to an underperformance of the TradeRES forecast method. 

Ramps power events refer to a dichotomous case, i.e., the existence or not of a pow-

er ramp. For this type of approach, a contingency table are usually built to derive the re-

sults. In Table 4, true positive (TP) corresponds to the ramps forecasted with the pro-

posed methodology that occurred; false positive (FP) corresponds to the ramps forecast-

ed but do not occur; false negative (FN) corresponds to power ramp events that occurred 

but were not forecasted; and true negative (TN) corresponds to power ramps forecasted 

and observed.  

  

Table 4. Key Schematic 2X2 contingency table for power ramp detection. Adapted 

from: [57].  

Event Foreseen 
Event Observation 

Total 
Yes No 

Yes TP FP Foreseen Yes 

No FN TN Foreseen No 

Total Observed Yes Observed No N=TP+FP+FN+TN 

 

From the contingency table, the following metrics can be computed: Bias Score (Bi-

as), precision, the probability of detection (POD) and the Hanssen & Kuipers Skill Score 

(KSS): 

𝐵𝑖𝑎𝑠 =
𝑇𝑃 + 𝐹𝑃

𝑇𝑃 + 𝐹𝑁
 (9) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (10) 

𝑃𝑂𝐷 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (11) 
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𝐾𝑆𝑆 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

(𝑇𝑃 + 𝐹𝑁) × (𝐹𝑃 + 𝑇𝑁)
 (12) 

The ideal score for the aforementioned metrics is 1. KSS ranges between 0 and 1 [86]. 

Bias, precision, and POD metrics enables to understand if the power ramps algorithm has 

the tendency to over foreseen (precision, POD and Bias Score > 1) or under foreseen 

(precision, POD and Bias Score < 1) the number of power ramp events.   
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3. Electricity markets time frames and power forecasts 

This section focuses on the relationship between electricity market time frames and the 

errors associated with power forecasts. Alternative solutions under analysis in TradeRES, 

including a potential shift to more frequent trading sessions, are presented as a solution to 

better synchronize market operations with the distinctive characteristics of vRES aiming to 

enhance forecast accuracy and reduce the overall system costs. 

3.1 Existing and alternative market designs addressed in the 
TradeRES project  

The existing designs of most European electricity markets were defined during a con-

ventional energy technology dominated period. These technologies can respond to the 

demand variability, they are easily adjustable and, if requested in due time, they can re-

spond efficiently to operational set points. However, in addition to the negative environ-

mental impacts of using fossil technologies, the marginal cost to operate these technolo-

gies is high. In contrast, vRES are weather dependent and still present significant forecast 

errors, especially for long time horizons.  

DAMs require the forecast of electricity production 12-36 hours before physical delivery 

in central Europe due to coupled DAM auction at noon, or 13-37 hours in Great Britain2, 

Ireland and Portugal. This time gap between bidding and the first deliverable can jeopard-

ize the profitability of vRES [87]. The DAM shortcomings and alternative designs for a 

near 100% renewable electricity system were addressed in different editions of Delivera-

ble 3.5 from TradeRES project [5], [6]. The authors suggested a reduction of the time gap 

between the DAM closure and the delivery time. This reduction could facilitate vRES, 

since it allows reducing the uncertainty associated to power forecasts, and many flexibility 

options. The authors concluded that the “choice for European market design is whether to 

maintain the current organization of wholesale electricity trade, in which the 24 hours of 

each day are traded together at noon the day before, or to replace it with a different 

wholesale market design.” 

As shown in Figure 8 and Figure 9, for a time horizon above six hours, NWP-based 

forecast is the recommended approach for vRES technologies. Nevertheless, the forecast 

performance is worse than the one expected for very short and short time horizons. In 

[88], the authors quantify the annual value of using solar power forecast in the Iberian 

electricity market. The forecast models that use NWP data showed the highest revenue. 

The benefits from using an NWP-based forecast approach, with respect to the persistence 

prediction, ranges from 1 to 6 kEUR per MW of PV capacity per year.    

                                                                            

 
2
 For Great Britain, the Day-ahead auction for 60 min products has been moved to 9.20 due to the Brexit, 

even enlarging the lead times. In addition, there is a 30 min auction held at 15.30. 
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Figure 8. Forecast errors according to time horizon for different wind power forecast approach-

es. HWP approach refers to a physical approach and “HWP/MOS” refers to a hybrid forecast ap-

proach. Figure adapted from [37]. 

 

 

Figure 9. Solar power forecast skills according to time horizon and type of forecast approach. 

Figure extracted [89]. 

From a forecast point of view, the main motivation for the DAM closure change is relat-

ed to the availability of the IBC conditions used to feed the NWP models. As mentioned in 

section 2, the quality of the power forecast strongly relies on these data. Most of the IBC 

availability from global models is limited to updates every 6 hours (at 00, 06, 12 and 18 

UTC). To participate in DAM in Europe, the NWP-based power forecast systems currently 

use the IBC from 00 or 06 UTC to obtain the expected vRES production or electricity de-

mand. To benefit from updated IBC data, postponing the DAM closure gate in some hours 
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could allow it to keep its overall structure, while it is expected to reduce the forecast er-

rors. Figure 10 presents possible alternatives to use updated IBC data, while the 24-hour 

block of the DAM is maintained. The possible new gate closure hour is associated with the 

IBC delivery hour plus an additional two hours to perform all required steps (download the 

IBC data, run the numerical mesoscale/regional model and apply the different forecast 

approach) to obtain the forecast.  

 
Figure 10. Possible DAM time frames taking in to account the meteorological data availability. D 

represents the day on which the simulation is carried out (Figure extracted from [90]). 

 

In this energy transition phase toward a near 100% renewable power system, this 

postponing does not require any disruptive change in the market designs and, as de-

scribed in Deliverable 3.5 [5], it can allow a “compromise between the need to accommo-

date facilities with ramping constraints, which need longer lead times, and variable renew-

able energy sources, for which a short time between market clearing and delivery reduces 

weather uncertainty”. 

In the current market design, market participants can already make use of short-term 

forecasts with high accuracy on intraday markets (IDM). Compared to the DAM design, 

intraday market designs show a larger variability across European countries. There are 

some (opening) auctions held on the day before delivery for some countries, such as the 

IDM auction for Austria, Belgium, Denmark, and Netherlands at 15:00 in which 15 min 

products are traded. For the continuous trading, a greater degree of harmonization has 

been established from the Single Intraday Coupling (SIDC) (see [91] and also TradeRES 

D3.5 [6]). Continuous intraday markets allow a trading up until real-time for Finland. For 

other markets, lead times are rather short and range from 5 mins for Austria, Belgium, 

Denmark and Netherlands to 30 mins for France and Switzerland [91].  

Improved forecasting accuracy can lead to smaller asymmetry for balance responsible 

parties (BRPs), ultimately reducing their imbalance payments. Thus, there is already a 
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benefit of increasing generation forecast quality which will be further increased with trad-

ing even closer to lead time, potentially also in DAM markets, as well as rising shares of 

vRES. 

The second edition of D3.5 from TradeRES project [6] introduces alternatives to the ex-

isting DAM market design, proposing a transition to more frequent trading sessions with 

shorter time horizons. In a system with nearly 100% RES, this market design aims to facil-

itate the integration of vRES by providing more accurate forecasts, thereby reducing the 

overall system costs. This shift aligns market operations with the intrinsic features of 

vRES, fostering a responsive, adaptable, and efficient energy market. Additionally, it can 

promote grid flexibility and the emergence of technologies and innovative solutions capa-

ble of providing the necessary flexibility. Figure 11 presents an alternative explored in the 

TradeRES project: the Period-Ahead Market (PAM), involving forecasts for 6 hours ahead 

with four updates during the day. As depicted in Figure 8 and Figure 9, implementing this 

shift may necessitate the adoption of new forecast systems since, for this timeframe, 

NWP-based models commonly used for DAM may exhibit inferior performance compared 

to models relying only on historical data (autoregressive).   

  

 

Figure 11. Schematic representation of day-ahead market and period-ahead time frames. 

3.2 Impact on power forecast errors in market modelling 

3.2.1. Modelling forecast errors in AMIRIS 

Following the approach presented in Deliverable 4.1 from the TradeRES project [90], 

the Agent-based Market model for the Investigation of Renewable and Integrated energy 

Systems (AMIRIS) was enhanced to consider power forecast errors for agents marketing 

renewable energy. Since error distribution functions for different technologies and varying 

gate closure lead times are not yet fully integrated, a Gaussian distribution was chosen to 

represent the forecast error. The distribution parameters are exemplary and were selected 

to illustrate the impact of forecast errors on the market simulations and to demonstrate the 

basic functionality developed within TradeRES. The data used does, however, not yet 

represent realistic data regarding power forecast errors. The integration of realistic data 

will be completed in a subsequent step. 
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In this demonstration of the approach, the renewable energy trading agent was config-

ured to consider power forecast errors with a constant distribution function over time. 

Thus, each hour of the day was assumed to follow the same error distribution. It is as-

sumed that the power forecast error follows a normal distribution formulation. Generated 

values represent levels with different relative error. To obtain power supply bids that in-

clude these errors, the error level is multiplied with the perfect foresight power infeed (see 

also Section 3.3.1.2 in Deliverable 4.1 [90]) which can be extracted from historical time 

series data. Figure 12 shows the incidence of actual power forecast error levels obtained 

within AMIRIS. The normal distribution of the error levels is clearly visible. The positive 

mean of the distribution (13) corresponds to an average overestimation of renewable 

power. Due to the variance of the distribution (14), however, also negative error values 

occur, reflecting a lower-than-actual feed-in estimate. 

 𝜇 = 0.05 (13) 

𝜎2 = 0.1 (14) 

 

Figure 12. Histogram of relative power forecast error levels created in AMIRIS following a normal 

distribution with a mean of 0.05 and a standard deviation of 0.1; 8760 hourly data points represent-

ing one year. 

 

The power forecast errors are created during the bid preparation stage of AMIRIS and 

propagate through the simulation. Therefore, these errors can impact the day-ahead mar-

ket clearing price, traders’ profits, and system costs as well as other subsequent markets 

(e.g., intra-day, ancillary services) which are not explicitly modelled in AMIRIS. Figure 13 

demonstrates the possible impact of power forecast errors on the day-ahead electricity 

market clearing price using the same error distribution as before. For most situations, 

prices found with erroneous forecasts are below the “perfect foresight” prices that do not 

contain any forecast errors. This matches the expectation since an on-average higher 

renewable feed-in should lead to lower prices due to the merit-order effect [92].  
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Figure 13. Sample impact of power forecast errors on (non-realistic) DAM clearing prices; black 

curve represents prices without power forecast errors, red dots resemble prices that include modi-

fied renewable feed-in estimates based on the same error distribution function as shown in Figure 

12. 

 

This simple example highlights the possible impact of power forecast errors on the 

market prices. It must be noted that several aspects are not yet satisfyingly reflected. For 

instance, real-world forecast errors might depend on the specific type of technology and 

the hour of the day. In addition, the errors shown here have no autocorrelation, while real-

world error series often have autocorrelative features. Thus, to obtain a more realistic time 

series of errors, correlations should also be considered. Therefore, real forecast data de-

veloped in TradeRES will also be integrated into AMIRIS and their effects analysed within 

the scope of WP 5 activities. Although, a brief analysis is provided in the next subsection.  

3.2.2. Impact of forecast errors in the simulation of German day-ahead 
market 

The assessment of the value of perfect RES forecasting compared to a real forecasting 

has been conducted using AMIRIS. The German day-ahead market in 2019 was simulat-

ed for two erroneous forecasting cases for onshore wind infeed and compared to a refer-

ence run with no forecast errors: 

1. Reference – no errors: The first case was the reference with no errors (i.e., the ob-

served power generation in 2019), representing a perfect forecast of RES infeed. 

2. Forecast time series: The second case involved a time series of forecasted onshore 

wind infeed with realistic errors. 

3. Gaussian errors: The third case used errors of onshore wind infeed forecasting that 

follow a normal distribution applied to the observed power generation in 2019. 

The case forecast time series uses power forecasts for wind onshore that underlie a 6-

hourly updated forecast. The forecast time series has been generated by Enlitia for the 

year 2019 with hourly resolution using the methodology presented in [93] and in the fol-
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lowing sections. The histogram in Figure 14 visualises the distribution of forecast errors 

throughout the year, relative to the actual infeed. Negative values indicate an underesti-

mation of the feed-in. Low negative forecast errors are the most frequent. However, the 

distribution is skewed to the right, with some hours showing significant overestimates of 

the feed-in. 

 

 

Figure 14. Histogram of hourly forecast errors in 2019 relative to the actual infeed, case forecast 

time series. Negative values indicate an underestimation of the feed-in.  

 

The third case, Gaussian errors, follows the approach developed and described in sec-

tion 3.2.1. The normal distribution was modelled on the forecast errors from the forecast 

time series case: the parameters µ and σ² were selected to ensure that the resulting error 

distribution closely resembles the one of the forecast time series. As a result, the forecast 

errors are similar to the case forecast time series, but there are no more extreme outliers 

in the Gaussian forecasting case and any autocorrelations are removed. 

Figure 15 displays the predicted infeed capacity of onshore wind turbines in Germany 

for a winter week, considering the three types of forecasts. It is assumed that the wind 

traders offer their predicted (and possibly erroneous) power on the day-ahead market. 

The forecast's quality was evaluated by comparing the awarded power as well as prof-

its of wind onshore operators in the three depicted cases. Revenues from the day-ahead 

market as well as from support were calculated from the AMIRIS runs and aggregated for 

all wind onshore operators throughout 2019. Support for onshore wind operators was as-

sumed to be in the form of a one-way Contract for Differences, with the levelized cost of 

electricity assumed to be independent of the forecast error case. It is important to note 

that the intraday market is not modelled in AMIRIS. Instead, if there is an underestimation 

of the feed-in (i.e. negative forecast errors), balancing energy costs apply. Balancing en-

ergy costs in case of negative forecast errors have been calculated based on historical 

balancing energy prices. 
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Figure 15. Forecasted feed-in potential of wind onshore for a winter week in Germany for different 

forecasting types. 

 

Figure 16 illustrates the total power awarded at the German day-ahead market by on-

shore wind. The results show that in the forecast time series case, the awarded power is 

approximately 6% lower compared to the reference. This suggests that feed-in is underes-

timated based on the underlying error time series. In the Gaussian forecasting case, there 

is little difference compared to the reference. 

 

Figure 16. Total awarded power by onshore wind generators at the German day-ahead market 

for three different forecast errors. 

 

Figure 17 shows the aggregated market revenues, support revenues and balancing 

energy costs as well as resulting net profits for different forecast error cases. The results 

indicate a significant decrease in profit for the forecast time series case, amounting to 700 

million EUR less per year compared to the reference case. This decrease is mainly due to 

a reduction in support revenues, which are about 580 million EUR less per year than in 
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the reference case. In the forecast time series case, approximately 175 million EUR per 

year must be paid at the balancing energy market. Losses in the Gaussian forecasting 

case are smaller, with profits only about 435 million EUR per year lower than the refer-

ence. Balancing energy costs in this case amount to approximately 115 million EUR per 

year. 

 

 

Figure 17. Aggregated revenues, balancing energy cost and net profit for wind onshore genera-

tors for different forecast errors. 

To understand the reduction of support payments to onshore wind generators in the 

forecast time series case, one must examine market values. With less total awarded pow-

er by onshore wind due to the underlying erroneous forecast time series, both market 

prices and market values increase in the day-ahead market compared to the reference 

(see Figure 18). Consequently, the market premium, which bridges the gap between mar-

ket values and the total levelized cost of electricity, decreases. 

 

 

Figure 18. Monthly market values for wind onshore for the forecast time series case compared 

to the reference. 
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In summary, it should be noted that the errors discussed here are largely hypothetical. 

By eliminating extreme errors, the Gaussian-distributed errors should be considered a 

conservative estimate, while the error time series should be considered an upper limit for 

realistic errors due to its approximation of the German federal territory. The true forecast-

ing error and its impact on the market trend remain unclear. Future research could aim to 

model more realistic forecast errors for different plant regions in Germany and quantify 

their impact on the overall market. 
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4. Forecast approaches developed in TradeRES project  

In this section, some preliminary results are presented as a drive for the development 

of TradeRES vRES power forecast tools. Specifications of the market players/agents that 

will benefit from these forecasts are also presented. Results from the application of the 

tools are presented in the section 5 and it will be further analysed from a market perspec-

tive in the deliverable 5.3 - Performance assessment of current and new market designs 

and trading mechanisms for National and Regional Markets from WP5. 

4.1 Deterministic vRES power forecast  

As discussed in the previous sections, and supported by several authors (e.g., [94]–

[96]) the vRES power forecast accuracy for short and medium time horizons strongly re-

lies on the outcomes of NWP model. The main error in the final forecast comes from the 

meteorological input rather than the existing statistical techniques applied in power fore-

cast systems [94]. For instance, using one source of meteorology for wind speed forecast 

the mean absolute percentage error (MAPE) is approximately 15%. Using this wind speed 

as input, MAPE for wind power forecast is approximately 23%. However, using the same 

algorithm with another source of meteorology, with wind speed MAPE of 24%, the MAPE 

error for power forecast has a substantial increase, around 45%. A generic graphical rep-

resentation of a generation modern wind turbine power curve, which presents typically a 

cubic dependency of wind speed for the range between 4-11 m/s. For these wind speed 

ranges, one can intuitively understand that an absolute error of 1 m/s in wind speed can 

represent a high error value in power forecast. However, the full potential of the output of 

NWP models was not fully explored. For instance, most of the vRES power system sys-

tems use a single point information from the NWP grid and a limited number of meteoro-

logical parameters.  

For the specific case of the single point outputs, the variability in generation observed 

in a given wind or solar power plant depends not only on the local dynamics, but it is also 

influenced by large-scale atmospheric patterns [83]. Although these patterns may be well 

simulated, in a specific location, the time series may present deviations [97]. Thus, anoth-

er feature of the NWP that is not usually explored in forecasting systems is the use of the 

results of a spatial grid in contrast to the use of only data from a single spatial point or the 

midpoints of the NWP domain surrounding a wind power plant/ solar PV [98]. In [83], a 

methodology that combines a gradient boosting trees algorithm with feature engineering 

techniques, aiming to extract the maximum spatial and temporal information from the 

NWP grid to improve wind and solar power, was implemented. The authors identified that 

the use of PCA enables to improve the wind power forecast accuracy. Thus, the achieved 

results indicate that an adequate extraction of features from the raw data of the NWP can 

improve the forecast systems. The authors recommend more investment in the data min-

ing phase as well as the application of statistical downscaling techniques capable of in-

corporating all data. 

Regarding the meteorological parameters extracted from NWP, recent works have 

shown that a careful selection of input variables for statistical methods can improve the 
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accuracy of the wind and solar power forecasts [56], [59], [95], [96]. In the case of wind 

power, the most common meteorological parameters used as input to feed the downscal-

ing approaches are the wind speed and direction. The influence of parameters related to 

the conversion efficiency as air temperature and pressure are included in some works. In 

[97] the authors included parameters from the upper levels of the atmosphere (e.g., the 

850 and 500 hPa pressure levels) as input to improve the performance of the statistical 

models. Using a PCA, in the work conducted by [99], the following parameters were iden-

tified as the most relevant to forecast the wind power variability: mean sea level pressure, 

geopotential height, and the meridional wind component and humidity relative. A physics-

oriented pre-processing with a NWP feature selection approach had a positive impact on 

the model performance from the team that won the European Energy Market Conference 

competition [100]. In [56], the author identified that a possible development trend to im-

prove the power forecast systems is to include exogenous meteorological input variables. 

Using  seven wind parks in Portugal [95], the authores demonstrated for seven wind parks 

that the optimal selection of meteorological data used in the forecast can lead to a reduc-

tion in wind power errors ranging from 13 to 37%. The authors showed that parameters as 

wind gust, wind power density, wind shear, and planetary boundary layer should be used 

to improve the wind power forecast. The authors also demonstrate the benefit of using 

NWP grid-spatial data against the use of NWP point data. For using the grid-spatial data, 

the authors applied PCA technique. By applying the PCA and a sequential forward feature 

selection algorithm (SFF) the RMSE can be reduced by nearly 25% compared to the 

benchmarking approach (single-point forecast with a limited number of meteorological 

parameters), Figure 19. If only PCA is applied, the results show a reduction in the RMSE 

values of nearly 8%. Although the use of PCA improves the forecast, an insightful selec-

tion of the meteorological features is paramount to reduce the uncertainty in the wind 

power forecasts. 

 

Figure 19. Average RMSE improvements for the seven wind parks analysed compared with the 

benchmarking approach. “PCA-WithoutSFF” – PCA approach without applying SFF algorithm; 

“NWPPoint+SFF” – data from NWP was extracted to the nearest point of each wind park and the 

SFF was applied; “PCA+SFF” – PCA approach and application of the SFF algorithm. 
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For solar power, [55] identified that parameters as precipitation intensity and wind speed 

penalized the performance of the forecast. On the other hand, parameters as ultraviolet 

index, wind bearing, and dew point could allow to improve the solar power forecast. In 

[101], the authors observed that the selection of features plays a more important role than 

the choice of the machine learning models in achieving the most accurate results. Fur-

thermore, in [102] the authors highlighted the significance of meteorological features such 

as cloud cover and relative humidity in improving solar PV forecasts.  

Against this background, in TradeRES, a method was implemented to identify if the in-

clusion of meteorological parameters derived directly from an NWP and others with impact 

in wind and solar power generation behaviour. These meteorological parameters include 

both, surface (e.g., planetary boundary layer) and vertical levels information. In addition, 

as discussed in section 3, short lead time forecasts based on historical data can suppress 

the performance of NWP-based forecasts. In this sense, autoregressive approaches were 

also implemented in the project and presented in the next subsections. 

4.1.1. TradeRES NWP-based power forecast approach 

In recent times, researchers have been focusing mainly on developing advanced statis-

tical methods as a way to improve the power forecast approaches using machine learning 

and deep learning models [103]. These models, although powerful, present challenges 

due to their complexity and the need for extensive hyper parameter tuning [101], making 

them difficult to interpret and implement. Moreover, the observed performance improve-

ments from some of these models are often marginal and are limited to specific case stud-

ies, raising questions regarding their universal applicability versus representing local ef-

fects. Another critical aspect is the selection of meteorological parameters used as input 

data for NWP-based power forecast systems [95]. While many studies focus on the de-

velopment of statistical methods, they often overlook the potential of NWP information to 

improve forecast accuracy. NWP models offer various meteorological parameters that can 

be utilized as inputs. Typically, wind speed and direction are common input variables in 

forecast systems, but other parameters like air pressure, wind shear, temperature, and 

humidity, which influence conversion efficiency, can also be incorporated to improve the 

final results. 

Based on this background, the vRES power forecast approach development within the 

scope of the TradeRES project aims to obtain the optimal combination of a large number 

of meteorological parameters using statistical and machine learning approaches, such as 

dimensionality reduction and feature selection algorithms, prior to applying several re-

gression algorithms calibrated for different weather regimes. Based on the preliminary 

results, the main steps of the NWP-based vRES power forecast method applied in 

TradeRES are presented in Figure 20.  
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Figure 20. NWP-based power forecast approach implemented in TradeRES project. 

  

The forecasting approach is also based on a SFF algorithm but, in this case, a calibra-

tion procedure according to the different weather regimes is performed. The classification 

of atmospheric circulation states into distinct types is a common approach used for under-

standing and scrutinizing weather patterns and their impact on a predetermined parame-

ter. For instance, in [104] the weather regimes were used to estimate Europe-wide wind 

power generation. Thus, the goal is to improve the drawbacks identified in the previous 

subsection by obtaining a forecast configuration for similar weather conditions. As related 

by several authors [94], the weather conditions have a strong impact on the wind power 

variability as well as in the uncertainty in its forecast. This can be partly explained by the 

weather conditions that unleash different responses, e.g., heating and cooling between 

land/sea surfaces, and thermal stratification [57], [105], [106]. The performance of solar 

power forecast systems depends on the cloud coverage, which can be distinguished using 

weather regimes.  

One of the objectives of this approach is to enable bidding strategically of market play-

ers by identifying the most adequate quantile (e.g., the quantile that maximizes the reve-

nue in the day-ahead market) [107]. 

Below, further details of each step in the methodology implemented are provided:  

 Meteorological data: The NWP data will be provided from the GFS global model. 

Several meteorological parameters from the NWP will be tested to identify meteoro-

logical features that enable to improve the wind or solar power forecast accuracy. 

New variables such as mean seal level gradient or atmospheric instability [57] to ac-

count for the energy conversion processes will be computed. 

 PCA analysis: Before applying the principal components analysis (PCA) individually 

to each meteorological parameter, a z-score normalization process is applied. The 

normalization step ensures that the parameters in the dataset have comparable 

scales preventing to certain parameters dominating the principal components due to 

their larger magnitudes. The application of PCA helps identify the dominant spatial-

temporal synoptic variability modes. In addition, by selecting a reduced number of 
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principal components (PC) poorly correlated local effects are removed. As a result, 

PCA reduces the dimensionality of the dataset [56]. In this study, PCA was individu-

ally applied to each meteorological parameter, and the number of retained (PCs) 

was determined based on the amount of variance they explain. The criterion used 

was to select the number of PCs that collectively account for 85% of the total vari-

ance [82]. 

 Pearson coefficient correlation: is then applied to identify the correlation between the 

PCs and the wind/solar PV power (or the combination of both) and the PCs are 

ranked in a descending way. In parallel with this process, a weather regime classifi-

cation is computed. 

 Weather regime classification - clustering: each forecast day will be classified into a 

specific WR using a clustering technique [108]. Clustering, an unsupervised learning 

technique, enables to unveil inherent patterns within data, grouping similar items 

without prior labelled guidance or supervision. The technique chosen was k-means, 

which is one the most used and well-known clustering algorithms due to its simplicity 

and easily interpretability easiness [109]. The k-means algorithm was applied in two 

slightly different ways, depending on whether dealing with aggregated (national) 

power data or power from a specific wind power plant. In the last case, it was con-

sidered hourly forecast meteorological data extracted for the specific wind power 

plant location. The clustering is based on three meteorological parameter – solar ra-

diation and meridional and zonal wind components. It should be noted that these 

variables were normalized beforehand, using z-scores. For the aggregated case, k-

means was conducted using the PCs from the variables. The points employed cor-

respond to the meteorological grid locations within the respective country. The opti-

mal number of clusters was determined through silhouette analysis [110]. However, 

this approach was constrained to a maximum of five clusters preventing the for-

mation of imbalanced clusters, namely, clusters containing very few elements. This 

logic was founded on the principle of achieving specialized forecasts for distinct 

weather conditions. Consequently, all clusters need to comprise a significant num-

ber of elements. 

 FSS for each weather regime: A greedy algorithm chooses the “most attractive” so-

lution in each iteration. In this case, the SFS attempts to find the “optimal” feature 

subset by selecting, iteratively, the meteorological PC that reduces the RMSE value. 

Sensitivity tests will be implemented for each case study and technology to identify 

the most adequate objective function (OF). The OF will depend on the perspective: 

i) for market players as wind and solar power producers (or vRES aggregator), the 

RMSE and electricity market revenue (including day-ahead and imbalances) will be 

tested and compared, and ii) for the TSOs, the RMSE will be used. Some of most 

advanced statistical approaches Random Forest, Support Vector Machines (SVM), 

Extreme Gradient Boosting (XGBoost) and LightGBM are implemented.  

The power forecast approach will be tested in the regional case studies defined in WP 

5 where, the benefit from this approach from an electricity market will be further discussed 

as an outcome of WP 5. 

4.1.2. TradeRES observed-based model forecast approach 

Wind and solar forecasts of the minutes and hours ahead are nowadays a reality and 

they are used by power system operators to manage the balance of supply and demand, 
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or even in some electricity market products and a literature review of these models used 

can be found, for instance, in [15], [111]. In the TradeRES project different models based 

only on historical data (ML and traditional time series models like ARIMA), were utilized. 

For this type of power forecast, the historical power series was iteratively incorporated, 

encompassing power from the last hour up to the previous 24 hours and additionally, 

power from multiples of 24 hours up to a week was considered: powerh-1, powerh-2, ..., 

powerh-i, ..., i = 3, ..., 24, 24*k, k= 2, ... 7 (i.e., starting from 24 hours, use multiples of 24 

up to a week). 

4.1.3. Deterministic power forecast models applied in the TradeRES 
project 

  Different models were designed to explore the time synergies and electricity market 

designs and their effectiveness in forecasting vRES outcomes across different time fore-

cast horizons and case studies/regions within the scope of TradeRES. The different mod-

els analysed are: 

1. NWP-based model 

o Employing NWP data and TradeRES methodology. 

 
 

2. Power–based model 

o Black-box model using only power information from the historical power se-

ries.  

 
3. Hybrid model 

o Combination of the previous two models - incorporating a standard forecast 

(or raw NWP) and historical power series data. 

 

In this deliverable, these models were applied for forecasting i) the next day comprising 

the 24-hour block, as required in the DAM, and ii) the next 6 hours, as required in the new 

market designs under analysis in the project. To effectively evaluate the best model for 

different market designs, a detailed analysis of various case studies is presented in sec-

tion 5.  

The output from this type of power forecast and the market players that can take ad-

vantage can be summarised as follows:   
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Output: Wind or solar power deterministic forecast with 60-minutes time resolution, 

according to the needs of the different players. When probabilistic forecasts are required, 

a quantile spline regression technique will be applied to obtain the probabilistic forecasts 

[106]. 

Market players that will benefit from these data: Wind and solar power producers, 

aggregators/virtual or hybrid power plants, and TSO.  

4.2 Wind power ramping forecast   

As the share of wind and solar PV increases in most of the power systems, ramping 

alert tools are being implemented by some TSOs [8], [113]. The goal of such tool is to 

complement the existing deterministic or probabilistic forecast systems enabling to in-

crease the level of situational awareness available to the TSO by helping them to better 

scale the level of risk that exists in the system. This risk can then be managed by taking 

into consideration additional factors, such as potential changes in energy consumption, 

additional reserves that can be deployed, and additional generators that may be available 

for unit commitment. Furthermore, players capable to provide temporal and sectoral flexi-

bility can also take advantage of this information to strategically participate into electricity 

markets. 

The characterization and definition of wind power ramps are linked to the notion of an 

“event that is critical enough to deserve special attention” [60]. In specific, ramp events 

consist of a rapid and substantial change in the wind power during a time interval ∆𝑡. 

Since no clear definition is available in the literature to classify power ramps, the definition 

(15) and principles used in [10] will be followed in TradeRES project as a “first-guess”. 

 

 
‖𝑃𝑜𝑤𝑒𝑟(𝑡+∆𝑡)−𝑃𝑜𝑤𝑒𝑟(𝑡)‖

∆𝑡
 ≥ 𝑃𝑅𝑅𝑣𝑎𝑙  (15) 

where, t denotes the time and 𝑃𝑅𝑅𝑣𝑎𝑙 is the reference value. For these parameters, the 

values identified in [10] will be used. 

Understanding power ramps events is not an easy task as the weather conditions are 

rarely the same for different wind parks. In fact, even when two wind parks are placed in 

similar latitudes, these triggering mechanisms can be very different due to local effects as 

the terrain characteristics, roughness and topography or phenomena like sea/land breez-

es [84]. Recent works, e.g., [10] state that, in order to understand and forecast the dynam-

ics of wind power ramps, holistic methodologies should be used to account for the spatial 

and temporal evolution of atmospheric large-scale circulation. In this sense, in their work, 

the authors implemented a windstorm detection algorithm and compared the performance 

with a common cyclone detection algorithm [114], [115]. Windstorm algorithm presented a 

highest performance. Nevertheless, some issues were identified in the current windstorm 

detection methodologies. The most critical one is that a wind power ramp is not always a 

consequence or is always linked to the existence of extreme wind speed values, being 

essentially dependent from the previous (historical) state of the flow. Moreover, these al-

gorithms are unable to distinguish upward from downward power ramps. For that reason, 

information from the previous time step ("memory effect") needs to be included in this type 
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of fast ramping tool. Therefore, this algorithm uses a time numerical differentiation in order 

to fit the particular case of wind power ramps events as described in the following subsec-

tions.  

4.2.1. Ramp detection algorithm  

This algorithm is based on the forecast mean sea level pressure from the NWP. In or-

der to be able to identify areas where there is the highest variation in the meteorological 

field, the pressure gradient was calculated as follows: 

∇𝑃 =
𝜕𝑃

𝜕𝐿𝑜𝑛𝑔
𝑖̂ +

𝜕𝑃

𝜕𝐿𝑎𝑡
𝑗̂ ≈

𝑃𝑖+1,𝑗 − 𝑃𝑖−1,𝑗

2∆𝐿𝑜𝑛𝑔
+

𝑃𝑖,𝑗+1 − 𝑃𝑖,𝑗−1

2∆𝐿𝑎𝑡
 (16) 

where P is the average pressure at sea level, Long the longitude and Lat the latitude. 

Next, and in order to introduce a “memory effect”, the derivative in time of the pressure 

gradient is calculated according to the following expression: 

𝜕 ‖𝛻𝑃‖

𝜕𝑡
≈  

‖𝛻𝑃‖𝑡 − ‖𝛻𝑃‖𝑡−1

∆𝑡
 (17) 

The remaining detection algorithm is equal to the windstorm algorithm presented in 

[10]. Therefore, the major differences between the two methodologies are the following 

aspects: i) use of pressure data, ensuring better identification of the synoptic centres [10]; 

ii) identification of extreme events associated with positive/negative power changes in 

time, enabling a better relationship with the wind power ramp events. In this sense, it is 

considered that the events with negative variations are those with a change in the pres-

sure gradient of less than the 2nd percentile. On the other hand, the positive events are 

identified as regions with a variation above the 98th percentile in the pressure gradient.  

In the case of upward ramps, the algorithm starts to determine the grid points where 

the pressure gradient is above a certain percentile. The spatial percentile calculation is 

based on the following formula [10]: 

Percx = F∗
−1(𝑝) = min {∇P: 𝑝 ≤ F∗(∇P)} (18) 

where, p represents the percentile considered and F∗ stands for the cumulative distribu-

tion function weighted by the cosine of the latitude of {W (Long, Lat, t):(Long, Lat)∈δ} be-

ing δ the spatial domain [116]. For downward power ramps, the 2nd percentile is consid-

ered, and the search is for grid points where the pressure gradient is below this value. 

Then, contiguous grid points for which the percentile condition occurs are enclosed into 

the same candidate [10]. A convex hull approximation is employed in this step to identify 

the convex polygon comprising all the spatial grid points that can belong to the same me-

teorological event (see black line in Figure 21). After, the average geometric center of 

each event is computed (magenta “*” symbols in Figure 21). As outcome, this spatial 

search algorithm provides a list of the possible location of events associated with synoptic 

systems. Only events with a minimum area of 150 000 km2 [117] are considered. This 

step is performed for each temporal time-step. 
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Figure 21. Example of one event in time t (black line) and one event in time t+1 (green line). The 

magenta “*” symbols represent the average geometric center of each candidate, while the magenta 

line indicates the trajectory of the meteorological event.  

 

Once the synoptic events are identified in the time step t, it becomes necessary to 

stitch to the nearest candidate at the time t+1 to build the trajectory. The following as-

sumptions are imposed in this step [10]: 

1. The maximum Euclidean distance between the centers of two consecutive time-
steps is 720 km [117]; 

2. Only events with a lifetime above 2h or with a maximum speed of 120 km/h are re-
tained. 

All events with no continuity are eliminated, and when two or more candidates are 

found, a cost function is applied in order to determine the most appropriate trajectory. The 

cost function applied is similar to the one shown by [118], which is expressed by: 

Tracking =  argmin (∑ (Ct − Ct+1,j) × (‖
𝐼𝑛𝑡𝑡 − 𝐼𝑛𝑡𝑡+1,𝑗

𝐼𝑛𝑡𝑡
‖)

j=N

j=1
) (19) 

where, Ct are the coordinates of the center for a determined synoptic event at time step t,  
Ct+1,j are the coordinates of the center for the jth synoptic event at time step t+1, Intt is the 

intensity observed at the geometric center of the event at time-step t and 𝐼𝑛𝑡𝑡+1,𝑗 is the 

intensity observed of the geometric center for the jth synoptic event at time-step t+1. 

At the end, the algorithm retains a tracking table with the different trajectories of the ex-

treme events detected and some basic characteristics, e.g., their lifetime, occurrence 

dates, speed, area of influence. In real-time operation, an alert will be issued when these 

events are nearby the region under analysis.  
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The power ramp power forecast accuracy will be assessed and analysed in the region-

al cases from WP 5. 

4.2.2. A nested forecast approach  

Based on the probabilistic and power ramp detection algorithm, a nested forecast ap-

proach will be established aiming to reduce the system cost associated with less commit-

ted reserves. Thus, the power reserves’ allocation can be dynamically established and 

dependent on the probability of existence (or not) of wind ramps. Other market players as 

flexibility providers or wind power producers can also benefit from this nested approach 

since it can allow for strategic participation in electricity markets. An example of the out-

comes of this tool is shown in Figure 22. 

 

 

Figure 22. Example of the outcomes from the nested forecast approach. Green regions: no 

power ramp is expected; Red regions: a power ramp is expected    

 

The output from this type of power forecast and the market players that can take ad-

vantage can be summarised as follows:   

Output: Hourly binary information regarding the occurrence (or not) of wind power 

ramps.   

Market players that will benefit from these data: All TradeRES agent-based models 

may benefit from these data by incorporating it in TSO agent capabilities or in flexibility 

provider and wind power producers’ agent behaviour, using this information to strategical-

ly participate in the electricity markets.  
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5. Application of the forecast approaches developed in 
TradeRES   

Simulations involved forecasting wind and solar power in Portugal, Spain, and Germa-

ny, covering 27 wind parks and 8 solar PV parks in Portugal. The 27 wind parks have 

nominal powers ranging from 17 MW to 255 MW (average of 68 MW) and are distributed 

throughout continental Portugal, with a higher density in the North and Centre of the coun-

try. The 9 solar parks have nominal powers ranging from 8 MW to 40 MW (average of 17 

MW) and are mainly located in the South of Portugal. For the national cases, data from 

Ninja.Renewables (extracted from https://www.renewables.ninja – see more details at 

[119]) were used as target, while the target variable for each Portuguese wind power plant 

was the observed hourly power production. Simulations were performed considering the: 

i) 24-hour period forecast needed for the DAM, using the existing and new gate closure 

hours (section 5.2); ii) alternative electricity market design – PAM which requires updated 

forecasts at 00:00, 06:00, 12:00, and 18:00 (section 5.3). Three forecasting scenarios 

were simulated across Portugal, Spain, and Germany exploring NWP-based models and 

the potential of incorporating real-time data from power production. Predictive models 

were trained using data from 2018 and then tested on the entire dataset from 2019. 

5.1 Case studies, data and vRES forecasting models                                                                                

For the NWP-based model the methodology described in section 4.1.1 was employed, 

incorporating slight modifications to explore different testing conditions. The changes and 

adaptations to the methodology are briefly described next. Meteorological data was de-

rived directly from GFS. The data were collected from a grid of points spanning Portugal, 

Germany, and Spain, ensuring a comprehensive analysis of meteorological conditions 

across these countries, Figure 23. 

 

 
 

 

Figure 23. Points extracted from the NWP for the different case studies: Portugal, Germany, 

and Spain. 

 

https://www.renewables.ninja/


 

Page 50 of 69 

As shown in Figure 23, the grid of meteorological points across Portugal is not regular 

in order to take advantage of the meteorological data availability from the Portuguese 

forecast provider, Smartwatt (now Enlitia). For Germany, it was considered a regular grid 

over Germany as presented in Figure 23 as well as for Spain. 

For the aforementioned case studies, the same weather variables were considered: 

 Wind speed (at 10m, 50m and 100m) 

 Wind gust (at 10m) 

 Wind direction (at 10m, 50 m and 100m) 

 Temperature (2m, 80 m) 

 Mean sea level pressure 

 Solar irradiance at surface 

 Relative humidity (2m) 

 Geopotential height (at 500, 850 hPa) 

 Planetary boundary layer height 

Following the collection of meteorological data, Principal Component Analysis (PCA) 

was applied to each meteorological indicator in the training dataset after standardization. 

It is essential to highlight that a separate standardization and PCA process was not con-

ducted for the test dataset. Instead, the transformation applied to the training data was 

directly employed for the test dataset. The criteria for selecting principal components in-

volved retaining those collectively explaining over 85% of the variance. The resulting 

components were utilized as features. Alongside, to identify typical days or weather pat-

terns, k-means clustering was employed using hourly values of wind u and v components 

and radiation throughout the training period. In the case study of Portuguese wind power 

plants, k-means was applied individually to each wind power plant, considering the specif-

ic location's meteorological indicators. On a global scale, this was done considering the 

principal components retained for these meteorological indicators. The optimal number of 

clusters was determined based on inertia values. Like PCA, clustering was applied to the 

training dataset, and for each unseen data point in the test dataset, predicting the respec-

tive cluster involved calculating the Euclidean distance between the data point and the 

cluster centroids. 

Various forecasting models were tested, considering two scenarios - with and without 

clustering. This encompassed testing different features (resulting from PCA) and various 

regression algorithms. In both case studies, Lasso Regression was utilized for feature 

selection due to its performance. In the clustering scenario, feature selection and algo-

rithm testing were conducted for each cluster. 

The regression algorithms examined included Random Forest, Support Vector Ma-

chine, LightGBM, and XGBoost. Initially, these algorithms were tested with default hy-

perparameters and subsequently fine-tuned for enhanced performance. The final choice 

was LightGBM, primarily for its speed advantage and superior performance, as evidenced 

by the Table 5 comparing it to other standard machine learning algorithms. The results in 

the table refer to simulations for the national total of wind (renewables ninja) for the PAM 

horizon. The LightGBM algorithm underwent training on 2018 data, and it was used to 

predict the entire year of 2019. 
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Table 5. Wind power NRMSE values for different ML methods using Portugal as a case study. 

ML technique 
NRMSE (%) 

Portugal Germany Spain 

LightGBM 24.10 20.20 18.38 

Gradient Boosting regression 25.06 20.49 18.38 

XGBoost 25.71 23.26 19.49 

SVM 28.33 39.99 23.99 

Random Forest 25.46 21.79 18.43 

 

For the model based only on historical data (power-based model), different regres-

sion techniques, including traditional time series models like ARIMA, were utilized (more 

details are available in section 4.1.2). Ultimately, to maintain consistency and based on 

the results, LightGBM was employed.   

For the hybrid approach (more details available in section 4.1.3) it was applied the 

NWP data, represented by the principal components retained for the meteorological indi-

cators, and data from the historical power series, also including different lags ranging from 

the previous hour up to a week. 

5.2 Simulation results for day ahead market with new gate closure 

 

Table 6 presents the results for Portugal and Spain using updated initial and boundary 

conditions, assuming a postpone of the gate closure of the day-ahead market, as depicted 

in Figure 10. These forecasts are only based on NWP data.  

 

Table 6. Wind and solar power NRMSE (%) for DAM according to different IBCs for 2019. 

IBC hour from 
Wind Solar 

Portugal Spain Portugal Spain 

6 UTC 29.51 20.22 28.32 20.73 

12 UTC 28.55 21.80 32.69 20.53 

18 UTC 26.28 19.54 28.51 20.99 

 

The findings presented in Table 6 indicate that the impact of incorporating updated ini-

tial boundary conditions on forecast certainty is not significant in the case studies ana-

lysed. In certain instances, the utilization of refreshed forecasts may even lead to inferior 

performance. These results can be partially explained using power forecasts that use dif-

ferent features to improve their performance according to each IBC condition. In addition, 

as discussed in [120] despite assimilating a comparable number of observations for IBC 

generation in the global NWP models, the different sources of these data (such as weath-

er stations, land soundings, aircraft, and satellites) exhibit significant variations throughout 



 

Page 52 of 69 

the day. This variability can introduce complexities into the final results. Additionally, the 

different cycles coincide with periods of increased atmospheric instability in Portugal and 

Spain due to the sunrise/sunset of the Sun or transition between different weather re-

gimes, making it more challenging for the model to accurately predict future states of the 

atmosphere. Therefore, the results suggest that the benefits of using new updated IBC 

are not always straightforward and should be carefully analysed. 

5.3 Comparison of power forecast results for the day and period 
ahead markets  

The subsequent section will specifically detail studies focusing on forecasts for the day 

ahead at 12:00 (as required in DAM) and the four daily updates at 00:00, 06:00, 12:00, 

and 18:00 (as required in PAM), as schematic represented in Figure 11. 

5.3.1. Wind power 

The results, in Table 7, show that the hybrid model result is advantageous for the four 

updates, but also for day ahead forecast in the case of wind power. The power-based 

model has a very poor performance for the day-ahead market period. Figure 24 presents 

the NRMSE for the wind parks using the different methods. 

 

Table 7. Wind power forecast results for day and period ahead markets (SD refers to standard 

deviation of the results for all wind parks). 

Market 

design 
Simulation Portugal Germany Spain Wind Parks 

DAM 

Historical Power 70.50 73.19 51.78 98.50 (SD = 5.19) 

Historical Power + NWP 31.16 23.72 21.29 66.52 (SD = 7.97) 

NWP 31.86 21.67 21.79 71.78 (SD =11.68) 

PAM 

Historical Power 24.70 28.75 20.37 57.59 (SD = 6.29) 

Historical Power + NWP 21.99 18.04 13.39 51.64 (SD =5.35) 

NWP 24.02 20.10 18.15 60.92 (SD =4.98) 

 

 

Figure 24 depicts the results obtained in the simulations of different models for the 27 

wind parks for DAM and PAM, respectively. Figure 24a) shows that, in general, the hybrid 

model based on NWP and historical power series tends to have better performance than 

the NWP-based model, although the results are sometimes very similar. The power-based 

model is clearly the least favorable. Figure 24b) allows us to observe the advantage of 

including data from the historical power series combined with meteorological variables. 
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a) Forecasts for DAM. 

 

b) Forecasts for PAM. 

 

Figure 24. Wind power NRMSE for the different wind power parks analysed in Portugal considering 

the a) DAM and b) PAM timeframes. 

 

The following graphs (Figure 25 and Figure 26) show the total wind national Portu-

guese power forecasts for different months. For the existing DAM design, the forecast 

based solely on the historical series performs poorly when compared to the NWP-based 

model and the hybrid model. In the case of updates for the next 6 hours every four hours, 

the performance is better, being even very close to the NWP-based model.  

The significance of specific lags in forecasting depends on whether the focus is on a 

national or park level. During the simulations, it was observed that the significance of spe-

cific lags from the power series depended on whether the focus was national or at the 

park level. For example, at the park level, the importance of variables related to lags of 3 

or more days was noticeable. Additionally, the results for the Portuguese case revealed 

lower performance when compared to Spain and Germany. This can be partially attributed 

to the lower installed wind power capacity, which reduces the potential benefit from the 

power smoothing effect to improve the forecast accuracy [77], [78].  
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a) Forecasts for DAM – Results for 10 days of Winter 2019 (20

th
 to 30

th
 January). 

 

 
b) Forecasts for DAM - results for 10 days of Summer 2019 (20

th
 to 30

th
 August). 

 
Figure 25. Portuguese aggregated wind power forecast considering the DAM design for some days in 

the a) Winter and b) Summer period of 2019. 
 

 
a) Forecasts for PAM – Results for 10 days of Winter 2019 (20

th
 to 30

th
 January). 

 

 
b) Forecasts for PAM - results for 10 days of Summer 2019 (20

th
 to 30

th
 August). 

 
Figure 26. Portuguese aggregated wind power forecast considering the PAM design for some days 

in the a) Winter and b) Summer period of 2019. 
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Furthermore, the performance of different models was analysed for a short-term hori-

zon (Figure 27). In addition to the models that have been considered, a persistence model 

was also included, consisting of maintaining the value of power for the initial forecast hour. 

This analysis was conducted for each of the case studies and for the 27 wind parks. The 

behaviour in the three national cases is very similar. The persistence model exhibits the 

best performance up to the next two hours. The NWP-based model shows nearly constant 

error behaviour. The hybrid model (NWP + Historical power) outperforms the NWP model 

in the first four hours (Germany and Spain), after which they become very analogous in 

terms of error. The model based solely on power also experiences a degradation in per-

formance as the time horizon increases, while maintaining the power value. 

 

 

 

Figure 27. Comparison of different short-term horizon models (left: Portuguese case study, cen-

ter: Germany, right: Spain). 

In Figure 28, the comparison of NRMSE for various short-term forecast time horizons 

(in hours) and models across the 27 wind parks under analysis is illustrated using a box 

plot. This graphical representation highlights the statistical distribution of NRMSE for dif-

ferent horizons. Within the box plot, a red mark at the centre denotes the median, and the 

box spans from the 25th to the 75th percentiles. The whiskers extend up to 1.5 times the 

interquartile range, signifying the data's dispersion. Outliers are visually indicated as black 

diamonds. 

 

Figure 28. Comparison of NRMSE (%) for different short-term forecast time horizons (in hours) 

and models for the 27 wind parks under analysis. 
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Similarly, for the 27 wind parks, the logic is analogous. The persistence error progres-

sively increases with the time horizon, as does the error of the model based on historical 

power series. As the horizon extends, the hybrid model slightly degrades in performance, 

becoming then similar to the NWP-based model. A similar behaviour is observed for two 

wind parks, event with distinct performance levels, Figure 29. 

 

 

Figure 29. Detailed analysis of NRMSE (%) for two specific wind parks and for different short-

term forecast time horizons (in hours). 

Also, for the wind power plants tested, using the TradeRES NWP-based model, it was 

observed an average decrease of 5.47% in NRMSE (standard deviation 2.8%) and a max-

imum decrease of 10.13%, when compared to the operational NWP-based model of the 

provider for the same data source. 

5.3.2. Solar power 

The simulations carried out for the wind case were also conducted for the solar case. 

Table 8  presents the obtained results.  

Table 8. Solar PV power forecast results for day and period ahead markets. 

Market 

design 
Simulation Portugal Germany Spain Solar Parks 

DAM 

Historical Power 34.98 46.74 25.07 60.53 (SD = 2.37) 

Historical Power + NWP 24.85 34.89 19.97 50.34 (SD = 2.19) 

NWP 32.69 30.99 20.53  58.21 (SD = 3.26) 

PAM 

Historical Power 24.29 33.41 17.85  52.75 (SD = 1.97) 

Historical Power + NWP 19.16 29.56 15.64 47.23  (SD = 2.07) 

NWP 27.82 30.69 20.61 52.58 (SD = 1.91) 

 

The outcomes align with those obtained for the wind power case. The results, in Table 

8, show that the hybrid model result advantageous for the four updates, but also for day 

ahead forecast in the case of solar power. The power-based model has a very poor per-
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formance for day ahead. Figure 30 presents the NRMSE for the wind parks using the dif-

ferent methods.  

The graphs presented in Figure 30a) and b) illustrate the outcomes derived from simu-

lations using various models for the parks under the scenarios of DAM and PAM, respec-

tively. For the 8 solar parks, even in the PAM scenario, significant errors are observed. 

However, in all cases, the combination of NWP and power history helps reduce the error 

compared to other models.  

  

 

Figure 30. Solar power NRMSE for the different solar power parks analysed in Portugal consid-

ering the a) DAM and b) PAM timeframes. 

Figure 31 and Figure 32 show the total national Spanish solar power forecasts for dif-

ferent months.  

 
a) Forecasts for DAM – Results for 10  days of Winter 2019 (01st to 10th February) 

 

 
b) Forecasts for DAM - results for 10 days of Summer 2019 (01st to 10th August). 

 
Figure 31. Spanish aggregated solar power forecast considering the DAM design for some days 

in a) Winter and b) Summer period of 2019. 
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a) Forecasts for PAM – Results for 10 days of Winter 2019  (01

st
 to 10

th
 February) 

 

 
b) Forecasts for PAM - results for 10 days of Summer  2019 (01

st
 to 10

th
 August) 

 
Figure 32. Spanish aggregated solar power forecast considering the PAM design for some days in a) 

Winter and b) Summer period of 2019. 

Figure 31 shows that for DAM in solar power, the performance of the model based on 

the historical power series is not as poor as observed for wind power. It also shows that in 

the winter months, a) the performance tends to be worse compared to the summer 

months, where there are more consecutive clear sky days. Figure 32b) particularly sug-

gests the importance of the combination between NWP and historical power data. Fur-

thermore, the performance according to the different forecast time horizons and models 

was also analysed for the solar power case. In addition to the models that have been con-

sidered, a persistence model was also included, consisting of maintaining the value of 

power for the initial forecast hour. This analysis was conducted for each national case 

study (Figure 33) and for 8 solar parks (Figure 34). 

 

   

 

Figure 33. Comparison of different short-term horizon models for solar power forecast (left: Portu-

guese case study, centre: Germany, right: Spain). 
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Figure 34. Comparison of NRMSE (%) for different short-term forecast time horizons (in hours) 

and models for the 8 solar parks under analysis. 

As observed in the wind power model, errors increase as the forecasting horizon ex-

tends. However, in this case, the persistence model error exhibits a significant increase, 

even for 1-hour ahead forecast. The performance of the hybrid model shows a slight de-

cline with a longer horizon, eventually reaching a level comparable to that of the NWP-

based model. 

For solar parks, a similar trend to the national scenario is observed in the boxplots illus-

trating the NRMSE distribution, as depicted in Figure 34 across various time horizons. As 

the forecasting horizon increases, the performance of the persistence model degrades 

significantly. The model based on historical power series also shows a tendency to de-

grade its performance. Meanwhile, the NWP model error remains relatively stable 

throughout the horizons considered. The hybrid model tends to degrade its performance, 

although to a lesser extent, and remains somewhat comparable, though inferior, to the 

NWP model. Details for two specific solar parks are provided in Figure 35. 

  

 

Figure 35. Detailed analysis of NRMSE (%) for two specific solar parks and for different short-

term forecast time horizons (in hours). 
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6. Final remarks 

In this report, a non-extensive review of the different forecasting methods was present-

ed focusing on the variable renewable energy systems (vRES) under analysis in the 

TradeRES project. This review served as the basis for framing the advantages and disad-

vantages of the different forecast approaches commonly applied in the energy sector. 

Moreover, it allowed to identify the synergies among the different approaches and existing 

electricity market time-frames. Based on this background different forecasting methods 

were developed to be used in the TradeRES project. 

To improve the existing forecast systems, a new numerical weather (NWP)-based ap-

proach is proposed in TradeRES.  Different models, various technologies, and multiple 

forecast horizon scenarios were tested, considering only NWP, historical power series, or 

their combination. The findings indicated that employing a grid of meteorological points 

yields superior performance compared to relying on a single meteorological point for fore-

casting, outperforming the operational model of Enlitia based on the same NWP global 

model used in TradeRES for a single meteorological point. Additionally, it was observed 

that incorporating non-conventional meteorological variables, such as the atmospheric 

boundary layer, is crucial for enhancing the accuracy of wind and solar power forecasts. 

The clustering process, used to identify typical weather patterns, also significantly contrib-

utes to performance improvement. 

The results show that for both technologies the use of NWP had a clear impact on the 

forecast for the next 24 hours compared to the model based solely on the historical power 

series. On the other hand, the combination of NWP and the historical production series 

proved to be advantageous. Consequently, power producers should invest in enabling 

real-time access to observed power data by the forecast providers to enhance the accura-

cy of power forecasts. For the time-frame of the day-ahead market wind and solar PV 

technologies continue to show significant errors, even assuming a postponement of their 

bids to an hour closer to real-time. For the timeframes of the alternative market designs 

analysed in this deliverable (below six hours), NWP-based results show an inferior per-

formance when compared with approaches that forecast future values based on past val-

ues.  

Using the agent-based market model AMIRIS it was possible to demonstrate that real-

istic forecasts can significantly reduce the profits of operators of onshore wind producers 

in the German day-ahead market. This is due to the frequent occurrence of slight under-

estimates of wind power production in the underlying distribution of the forecast time se-

ries. Assuming Gaussian-distributed errors in wind power production, however, results in 

smaller losses. This finding highlights the importance of the forecast error distribution for 

market outcomes. Future research could aim to model more realistic forecast errors for 

different plant regions in Germany and quantify their impact on the overall market. 

Finally, it should be highlighted that the work conducted in this T4.4, which is summa-

rised in this report, paves the way for addressing specific market designs and product 

choices identified in TradeRES project. The detailed impact of these results on electricity 

markets will be presented in the forthcoming WP 5 deliverables, namely, in D5.3 - Perfor-
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mance assessment of current and new market designs and trading mechanisms for Na-

tional and Regional  Markets.  

The power forecast tools created as part of this task will be made accessible to the 

public via GitHub and disseminated using the dissemination channels established in the 

project. The goal is to ensure that users interested can have the capability to execute the 

tools and obtain power forecasts that can be used in future studies or as benchmarking. 
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