
 

AMIRIS 
Agent-based Market model for the Investigation of 

Renewable and Integrated energy Systems 
Overview 

AMIRIS is a next-generation tool to dissect the complex questions with respect to fu-
ture energy markets, their market design, and energy-related policy instruments. The 
model computes electricity prices based on the simulation of strategic bidding behav-
iour of prototyped market actors. This enables AMIRIS to not only consider marginal 
prices but also support instruments and uncertainties. Figure A - 1 shows agents and 
their associated flows of information, energy, and money modelled in AMIRIS. 

 

Figure A - 1. Overview of agents and their interactions in AMIRIS (open version). 

Actors are represented as agents and can be roughly divided into six classes: Pow-
er plant operators, traders, marketplaces, policies, demand, and flexibility option facili-
ties. Power plant operators provide generation capacities to traders, but do not trade on 
the markets themselves in the model. Bidding and operation decisions are conducted 
by traders in pursuit of, e.g., profit maximization strategies. Marketplaces serve as trad-
ing platforms and determine prices. Policies define a regulatory framework, which im-
pacts the decisions of other agents. Demand agents as well as flexibility option facili-
ties, e.g., storage facilities, trade directly in the electricity market. 

 

  

User Guide 



 
Inputs 

AMIRIS is configured via human-readable YAML (recursive acronym: YAML Ain't 
Markup Language) files: “scenario.yaml” and “fameSetup.yaml”. The latter is covered in 
the section “How to run AMIRIS”. The scenario file is split into several sections: 

The “Schema”-section specifies which types of agents exist, which attributes they 
have, which attributes they require and how they can interact with other agents. This 
section must not be changed. Typically, a separate schema file is provided to describe 
simulation capabilities and requirements. The special YAML loader of the open 
Framework for distributed Agent-based Modelling of Energy systems (FAME) package 
for input file creation for FAME models and digestion of FAME outputs, i.e., FAME-Io 
https://gitlab.com/fame-framework/fame-io allows to split and reuse YAML files via the 
“!include”-command. 

The “Agents”-section defines which agents are to be created in the simulation and 
how they are parameterized. Each agent requires at least a type and unique id. Addi-
tional attributes might be required, depending on its type. Attributes can be a single 
value, a list of values, an externally specified time series in CSV format, a group of sub-
attributes or even a list of grouped sub-attributes. The type of each attribute is specified 
in the Schema section. The full list of attributes cannot be stated in this document. In-
stead, please refer to the up-to-date pages at the AMIRIS-Wiki https://gitlab.com/dlr-
ve/esy/amiris/amiris/-/wikis/Classes/Classes. There, a comprehensive list of all attrib-
utes and associated configuration options can be found for all agent types. 

The “Contracts”-section configures the interactions between the agents. Each con-
tract comprises a sender and receiver agent (identified by ID), a product type, as well 
as an initial execution time and execution interval (in seconds). Usually, changes to 
contracts are only required if agents are added to or deleted from the configuration. For 
this, groups of agents are defined that allow to add and remove agents conveniently 
with a change at a single point of the configuration. Please see the AMIRIS-Wiki 
https://gitlab.com/dlr-ve/esy/amiris/amiris/-/wikis/GetStarted/Getting-started for a list of 
all available products per agent type. Similar to the “Schema” section, “Contracts” are 
often extracted to separate files to keep the scenario file tidied up. FAME-Io’s “!include” 
command can be used to load a multitude of other YAML files. See the AMIRIS-
Examples project https://gitlab.com/dlr-ve/esy/amiris/examples for several examples of 
techniques to keep the configuration files neat and organized. 

Contract configuration for AMIRIS is not trivial, since almost all actions within AMIR-
IS are controlled via contracts. Thus, one needs to know what actions create which 
data, which input is required by what action and which agent can provide such input. 
Therefore, instead of starting from scratch, please refer to the AMIRIS-Examples pro-
ject https://gitlab.com/dlr-ve/esy/amiris/examples to see several working examples of 
agents and related contracts. 

Once the configuration is completed, “FAME-Io”, a Python tool, is used to convert 
configuration files into a single binary input file for AMIRIS. Please see the FAME-Io 
documentation https://gitlab.com/fame-framework/fame-io for further instructions on its 
installation, execution, and command-line options. 

  

https://gitlab.com/fame-framework/fame-io
https://gitlab.com/dlr-ve/esy/amiris/amiris/-/wikis/Classes/Classes
https://gitlab.com/dlr-ve/esy/amiris/amiris/-/wikis/Classes/Classes
https://gitlab.com/dlr-ve/esy/amiris/amiris/-/wikis/GetStarted/Getting-started
https://gitlab.com/dlr-ve/esy/amiris/examples
https://gitlab.com/dlr-ve/esy/amiris/examples
https://gitlab.com/fame-framework/fame-io


 
Outputs 

Each execution of AMIRIS creates a singular output file. Name and path to that file 
can be controlled via the “fameSetup.yaml” (see next section). The binary output file 
(protobuf) needs to be converted to human-readable form for interpretation. FAME-Io 
provides a script to perform that task, which will create a folder with CSV files: one file 
per agent type in the simulation. Figure A - 2 provides an example output in that format. 

 

Figure A - 2. Sample output of an agent of type “EnergyExchange” in CSV format. 

Each created output file features minimally the columns “AgentId” and “TimeStep”. 
The first column refers to the ID of the agent as specified in the “scenario.yaml” file 
(see previous section). All outputs from agents of the same type are combined in the 
same file, although sorted by “AgentId”. The next column defines the simulation time at 
which the output was made by that agent. Please see https://gitlab.com/fame-
framework/wiki/-/wikis/TimeStamp for a detailed description how FAME measures time. 
FAME-Io offers a function to convert time steps to time stamps – when using Spine 
Toolbox (see next section), this is done automatically. 

Depending on the type of agent, additional columns exist. Typically, the header row 
tells what value is depicted – including the unit in its name. Note that not necessarily all 
output columns are used in each time step. Figure A - 3 provides an example for that 
case. There, outputs alternate between specifying offered and awarded power, which 
occurs at different times within the simulation. 

 

Figure A - 3. Sample output of an agent of type “ConventionalPlantOperator”. 

A full list of all outputs cannot be given here. Please refer to the AMIRIS-Wiki 
https://gitlab.com/dlr-ve/esy/amiris/amiris/-/wikis/GetStarted/Getting-started to learn 
about all agent types and their outputs. You may also check the source code and in-
spect what is actually done to create the output. Simply search for uses of the 
“store(<ColumnName>, <Value>)” method in the particular class for the agent type you 
are interested in.  

https://gitlab.com/fame-framework/wiki/-/wikis/TimeStamp
https://gitlab.com/fame-framework/wiki/-/wikis/TimeStamp
https://gitlab.com/dlr-ve/esy/amiris/amiris/-/wikis/GetStarted/Getting-started


 
How to run it 

AMIRIS is based on FAME, the “open Framework for distributed Agent-based Mod-
elling of Energy systems” (see https://gitlab.com/fame-framework). Thus, it requires a 
Java Development Kit (version 8 or above), a Python installation (version 3.7 or above) 
and Apache Maven. AMIRIS can be either run standalone or within the Spine Toolbox. 
Therein, all individual steps of input preparation, running and output conversion are 
joined into a single workflow. An experimental workflow to run AMIRIS within the Spine 
Toolbox is available at https://github.com/TradeRES/toolbox-amiris-demo. However, 
usability and documentation is to be enhanced in the near future. Please see the 
AMIRIS Readme file https://gitlab.com/dlr-ve/esy/amiris/amiris/-
/blob/main/README.md for a description on installing and running AMIRIS without 
Spine Toolbox. The Spine Toolbox workflow requires a packaged Java ARchive (JAR) 
file of AMIRIS including all dependencies. It can be easily obtained using Maven – 
please follow instructions in the AMIRIS Readme.  

Figure A - 4 illustrates the workflow steps in the Spine Toolbox: two files (1) need to 
be provided to the workflow: the scenario definition and the fameSetup – both in YAML-
format. Please see the section Inputs for a description of the scenario file. 

 

Figure A - 4.  Workflow executing AMIRIS in the Spine Toolbox. 

The workflow automatically calls FAME-Io (2) to translate the scenario into a single 
binary input file in protobuf format to be used by AMIRIS. When AMIRIS is run (3), the 
fameSetup.yaml file is read by FAME-Core. It defines file output parameters (see Table 
A - 1). It is best not to change the provided file. After AMIRIS is run, the result file is 
read (4), extracted into .csv files and imported (5) into the local SQL database (6). To 
comply with the TradeRES naming standards and assigning of time stamps to the re-
sults, these data are then transformed (7) and saved into other database section (8). 

Table A - 1. FAME setup input parameters. 

Parameter Description 
outputPath Relative or absolute path to create the output file at 
outputFilePrefix Name of the output file 
outputFileTimeStamp True on default; if true, a time stamp is prepended to the output file 
agentPackages List of Java package names that contain classes derived from “Agent” 
messagePackages List of Java package names that contain classes derived from “DataItem” 
portablePackages List of Java package names that contain classes derived from “Portable” 

 

https://gitlab.com/fame-framework
https://github.com/TradeRES/toolbox-amiris-demo
https://gitlab.com/dlr-ve/esy/amiris/amiris/-/blob/main/README.md
https://gitlab.com/dlr-ve/esy/amiris/amiris/-/blob/main/README.md


 
Find out more 
AMIRIS Home  https://dlr-ve.gitlab.io/esy/amiris/home/ 

AMIRIS@Gitlab https://gitlab.com/dlr-ve/esy/amiris/amiris 

AMIRIS@openMod https://forum.openmod.org/tag/amiris 

FAME@Gitlab  https://gitlab.com/fame-framework 

FAME-Core@Maven https://mvnrepository.com/artifact/de.dlr.gitlab.fame/core 

FAME-Io@PyPI https://pypi.org/project/fameio/ 

Nitsch, F. and Schimeczek, C. and Bertsch, V. (2021) “Back-testing the agent-based 
model AMIRIS for the Austrian day-ahead electricity market”. Working paper. doi: 
10.5281/zenodo.5726738 

Nitsch, F. and Deissenroth-Uhrig, M. and Schimeczek, C. and Bertsch, V. (2021) “Eco-
nomic evaluation of battery storage systems bidding on day-ahead and automatic fre-
quency restoration reserves markets”. Applied Energy (298). Elsevier. doi: 
10.1016/j.apenergy.2021.117267. 

Laura Torralba-Díaz et al. (2020) “Identification of the Efficiency Gap by Coupling a 
Fundamental Electricity Market Model and an Agent-Based Simulation Model”. Ener-
gies. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en13153920. 

Frey, U. and Klein, M. and Nienhaus, K. and Schimeczek, C. (2020) “Self-Reinforcing 
Electricity Price Dynamics under the Variable Market Premium Scheme”. Energies. 
Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en13205350. 

Deissenroth, M. and Klein, M. and Nienhaus, K. and Reeg, M. (2017) “Assessing the 
Plurality of Actors and Policy Interactions: Agent-Based Modelling of Renewable Ener-
gy Market Integration”. Complexity, 2017, 7494313:1-7494313:24, doi: 
10.1155/2017/7494313. 

https://dlr-ve.gitlab.io/esy/amiris/home/
https://gitlab.com/dlr-ve/esy/amiris/amiris
https://forum.openmod.org/tag/amiris
https://gitlab.com/fame-framework
https://mvnrepository.com/artifact/de.dlr.gitlab.fame/core
https://pypi.org/project/fameio/
https://doi.org/10.5281/zenodo.5726738
https://doi.org/10.1016/j.apenergy.2021.117267
https://doi.org/10.3390/en13153920
https://doi.org/10.3390/en13205350
https://doi.org/10.1155/2017/7494313

