
D2.3 How to use TradeRES
optimization models database

Deliverable number: D2.3

Work Package: WP2

Lead Beneficiary: VTT

Page 2 of 15

Author(s) information (alphabetical)

Name Organisation Email

Juha Kiviluoma VTT juha.kiviluoma@vtt.fi

Ni Wang TNO

Silke Johanndeiter ENBW

Acknowledgements/Contributions

Name Organisation Email

-

Document information

Version Date
Dissemination

Level
Description

1.0 18.11.2022 PU Guide to using TradeRES database for optimization
models

Review and approval

Prepared by Reviewed by Approved by

J. Kiviluoma, N. Wang, S. Jo-
hanndeiter

Milos Cvetkovic A. Estanqueiro

Disclaimer

The views expressed in this document are the sole responsibility of the authors and do not necessarily reflect
the views or position of the European Commission or the Innovation and Network Executive Agency. Neither
the authors nor the TradeRES consortium are responsible for the use which might be made of the information
contained in here.

mailto:juha.kiviluoma@vtt.fi

Page 3 of 15

Executive Summary
The deliverable explains how to use the TradeRES optimization model databases to run

the optimization models. It is mainly targeted at project internal use for those who have a

need to understand how the scenarios have been built and how they could be modified for

the purposes of the case studies.

Page 4 of 15

Table of Contents

Executive Summary .. 3

Table of Contents ... 4

1. Introduction ... 5

2. Common input database ... 6

3. Backbone data format, workflow and changing scenario data 7

3.1 Data format and workflow .. 7

3.2 Changing the main parameters in TradeRES scenarios10

4. COMPETES data format and workflow ..12

4.1 Data format and workflow ...12

4.2 Changing the main parameters for TradeRES scenarios13

5. Common data structure for optimization model results14

6. References ..15

Page 5 of 15

1. Introduction

TradeRES case studies are performed for five different geographical scopes. The Pan-

European case study covers whole of EU, GB, Norway, Switzerland and the Balkans. Three

country/region case studies: Netherlands, Germany and MIBEL with Portugal and Spain.

All of these, except the local case study, which is distinct from the others, require inputs

from the optimization models. WP2 has built the database in such a manner that the opti-

mization models can run for the whole Europe, but if needed, also run for each of the coun-

try/region case studies separately. The optimization models could also be run in higher fi-

delity if the case studies improve the data presentation of those regions – either with the

rest of Europe or separately.

This user guide aims to assist TradeRES modellers to understand and operate the opti-

mization models. For that purpose, the current approach to input data is explained, the

different data formats shortly explained (with in-depth explanations available in tool docu-

mentations), possible modifications to the scenario assumptions are introduced, and finally

the results from the optimization models are outlined.

Page 6 of 15

2. Common input database

TradeRES is attempting to soft-link two optimization models and four agent-based mod-

els in various ways. In the ideal case, all models could function from a common input data-

base, which would mean that any edits to the input data would be automatically shared by

every subsequent model. This would allow to freely build iterations between any of the mod-

els. While TradeRES has been working to achieve this, it has proven to be a very challeng-

ing goal. There are three main issues.

First, developing a shared ontology with shared vocabulary has been impractical – the

models, especially the optimization models in relation to the agent-based models, have very

different data requirements and there is much less commonality than originally anticipated.

Second, working from a common database is an extra burden for the modellers (even if

it would eventually pay off as enhanced model-linking capability). It is much more conven-

ient to work from the existing input data structures each model has, even though the data

shared between the models needs to be entered multiple times. As a downside, there is an

increased risk for erroneous and incomparable data.

Third, the data transformations required to enable running models from a common data

format are formidable. Spine Toolbox, which assists in this task, did not have all necessary

capabilities, which meant that part of the data transformations had to be done in code. As

the common ontology was slow to develop, modelling began with model specific data for-

mats and continued in that track in order to produce results in schedule. These inconven-

iences have been an important lesson for the further development of Spine Toolbox, which

will continue in the new EU project Mopo. The required data transformations can be com-

plex, but TradeRES has thought a lot about the extent of those complexities and how they

should be resolved.

Nonetheless, TradeRES has soft-linked several models together as workflows that con-

vert data between models often using Spine Toolbox as a conduit. Furthermore, the aim to

have a common database to serve multiple models is still alive and may yet be realised

towards the end of the project even if the initial results are produced with model specific

data formats and workflows.

Page 7 of 15

3. Backbone data format, workflow and changing
scenario data

3.1 Data format and workflow

Backbone modelling framework is written in GAMS and it reads GAMS specific GDX files

as input and outputs GDX files. The benefit of the filetype is a compressed binary data

format which is very fast to read and write. However, it cannot be used directly by pre-

processing and post-processing tool chains. Therefore, two methods for reading Backbone

inputs have been developed: specially formatted Excel files or Spine Toolbox databases.

Both can be converted to GDX files when the model is run.

In the TradeRES project, a Spine Toolbox workflow takes raw data from several Excel

input files (developed by TradeRES Task 2.1). These are items numbered 1 in the workflow

of Figure 1. Then data importers (items numbered 2) convert the data into a Spine Toolbox

database.

Spine Toolbox databases are of the type “entity-attribute-value with classes and relation-

ships” and specific classes have been developed to hold Backbone data (Figure 2). Objects

(on the left) are the basic building blocks, for example nodes and units. Each object can

hold parameters available to the object class (e.g., ‘efficiency’ for units). Relationships de-

fine the connections between the objects and contain the parameters specified for those

relationships. Important relationships include grid__node__node to define transfer connec-

tions and grid__node__unit__io to define inputs and outputs of units. For example, ‘exist-

ing_capacity’ is can be defined for the output of the electricity generating units into a specific

node. More information available in the Backbone article (Helistö et al. 2019) and in the wiki

pages: https://gitlab.vtt.fi/backbone/backbone/-/wikis/home.

The Spine Toolbox data structure allows flexible construction of scenarios, since data

items are divided into sets of alternatives that can be used in building of the scenarios (Fig-

ure 3). For example, alternative ‘base-netherlands’ contains data to run the base scenario

for Netherlands. This alternative can be combined with the other ‘base’ alternatives to form

the base scenario for the European case study. In addition, there are alternatives for the

flexibilities and VRE shares that are required by the TradeRES scenarios as can be seen

from Figure 3.

The result of workflow (items 5-9 in Figure 1) can then be executed with each scenario

in a parallel process. The first step, items 4 and 5, converts Backbone data from the Spine

database (item 3) into Backbone input files (gdx format). Item 6 is a script that executes

Backbone twice: first for investments decisions using 5 representative weeks and then to

schedule the system with full year time series using rolling optimization window. TradeRES

relevant results are then imported to another Spine Toolbox database (item 8), which allows

to deposit comparative results across scenarios in a single Excel file (item number 9 in

Figure 1). This Excel file can then be tooled to serve as input data for the agent-based

models.

https://gitlab.vtt.fi/backbone/backbone/-/wikis/home

Page 8 of 15

Main input and output categories from Backbone are introduced in TradeRES D6.2. Fur-

thermore, related data requirements are explained in more detail at https://gitlab.vtt.fi/back-

bone/backbone/-/wikis/home and in Helistö et al. (2019). The wiki-link also contains instruc-

tions how to start using Backbone. The TradeRES workflow (Figure 1) is available at

https://github.com/TradeRES/TradeRES-Backbone-demo (it is Spine Toolbox project, so

this project folder must be opened with Spine Toolbox to access the functionalities). There

are some specific modifications to Backbone to run the TradeRES scenarios. TradeRES-

Backbone-demo contains a submodule for Backbone as well as these TradeRES specific

modifications (more specifically, they are in ‘TradeRES’ branch of Backbone repository:

https://gitlab.vtt.fi/backbone/backbone/-/tree/TradeRES).

Figure 1. Spine Toolbox workflow for processing Backbone input data

https://gitlab.vtt.fi/backbone/backbone/-/wikis/home
https://gitlab.vtt.fi/backbone/backbone/-/wikis/home
https://github.com/TradeRES/TradeRES-Backbone-demo
https://gitlab.vtt.fi/backbone/backbone/-/tree/TradeRES

Page 9 of 15

Figure 2. Object and relationship classes for Backbone data (classes with black text used by

TradeRES runs).

Page 10 of 15

Figure 3. Alternatives used to build TradeRES scenarios

3.2 Changing the main parameters in TradeRES scenarios

VRE share – Can be changed directly from the input database by selecting one of the

alternatives that contain VRE share assumptions: ‘base_VRE’, ‘low_VRE’ and ‘high_VRE’.

The parameters ‘energyShareMax’ and ‘energyShareMin’ can be used to limit the share of

VRE (as calculated from the overall demand that includes also the flexible demands).

H2 demand – Alternatives ‘low_H2’ and ‘high_H2’ include time series for H2 demand

that can be replaced (or a new alternative can be created using the existing ones as exam-

ples)

EV share – EVs require multiple time series and they are best updated in the original

input data file where the share of EVs out of all vehicles can be easily changed. After chang-

ing the value, re-import the data into the input database (old values are automatically re-

placed).

Page 11 of 15

Building flexibility – the parameters and time series to represent buildings in the

TradeRES Backbone model are based on a complicated data processing chain (partially

published in https://cris.vtt.fi/en/publications/archetypebuildingmodeljl-a-julia-module-for-

aggregating-building-, rest will be published in near future). Some of the parameters can be

directly changed in the input database (e.g., conversion efficiencies) but others would re-

quire re-running the whole data processing chain (e.g., structural assumptions for the build-

ings).

https://cris.vtt.fi/en/publications/archetypebuildingmodeljl-a-julia-module-for-aggregating-building-
https://cris.vtt.fi/en/publications/archetypebuildingmodeljl-a-julia-module-for-aggregating-building-

Page 12 of 15

4. COMPETES data format and workflow

4.1 Data format and workflow

COMPETES is written in AIMMS and reads data from MS Access database as input and

writes in excel files as an output.

The input data is stored in an Access database (Figure 4). The advantage of the Access

database is that it offers a tabular view of the data and can import external data from various

data sources.

Figure 4. A screenshot of the data of hourly demand in Access database

The COMPETES workflow is centred around AIMMS procedures. These procedures are

pieces of the AIMMS code that perform a specific task that can be called either from the

interface or the model itself. In COMPETES, procedures are used to do pre-processing (i.e.,

read inputs from the database and assign the values to the parameters in the model), solve

the model, and post-processing (i.e., calculate specific results based on the outputs and

assign the results to designated cells in the excel sheets). The procedures are part of the

COMPETES model and must be used together with the main code for optimization.

It is possible to save the case data as a .data file that contains all the (raw) data in

COMPETES in addition to the excel files. And it is recommended to save the data file once

Page 13 of 15

the model has generated outputs. The advantage of saving the data file is that it is then

always possible to generate more results than what has been stored in the excel sheets.

Figure 5. COMPETES workflow

4.2 Changing the main parameters for TradeRES scenarios

A standard workflow for changing the input is to prepare the TradeRES parameters in

excel sheets using a designated template and import them to the Access database. The

TradeRES parameters are taken from the common TradeRES database.

Page 14 of 15

5. Common data structure for optimization model
results

Both optimization models create a wide range of outputs. A subset of those may be of

interest to the case studies in TradeRES and those results are separately output into Excel

files that are easy to access. Consequently, following data will be available in the Excel files

for each scenario:

- consumption time series (separated when possible: inflexible demand, electrolysers,

buildings, electric vehicles)

- price time series for electricity nodes (based on marginal values of the nodes)

- generation time series for all conversion units

- transfer time series for all transfer connections

- existing, invested and decommissioned capacities for different technologies in all

nodes

- use of demand curtailment (to indicate issues in model runs)

- total generation by unit type

- total cost of the scenario

The results from the optimization models contain a lot more data than is considered

above. It may also be that the data is required by the agent-based models in a specific

format and the process is to be automated. In both cases, it is possible to build further

processing chains using the exporter and importer tools in Spine Toolbox and, if need be,

by using Spine database API Python functions to have programmatic access to the data.

There are further instructions for using the exporters in the Spine Toolbox documentation:

https://spine-toolbox.readthedocs.io/en/latest/data_import_export.html

https://spine-toolbox.readthedocs.io/en/latest/data_import_export.html

Page 15 of 15

6. References

Helistö, N., Kiviluoma, J., Ikäheimo, J., Rasku, T., Rinne, E., O’Dwyer, C., Li, R., &

Flynn, D. (2019). Backbone—An Adaptable Energy Systems Modelling Framework. Ener-

gies, 12(17), 3388. https://doi.org/10.3390/en12173388

https://doi.org/10.3390/en12173388

