

TradeRES

New Markets Design & Models for 100% Renewable Power Systems

The Iberian Case Study RES Support Schemes in the Iberian Power Systems

Hugo Algarvio, LNEG (online) and Gabriel Santos, ISEP

EERA-ESI TradeRES Workshop, 28th June 2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 864276

The Iberian (Portugal and Spain) Power Systems

Objective:

- To verify the economic viability of new power plant investments in energyonly markets:
 - without considering renewable support schemes or additional incentives
 - using the power plants capacity, energy consumption, electricity market designs, and prices recorded in 2019 \rightarrow the year considered as the "starting point" in TradeRES project.

2 Can energy-only marginal markets remunerate power plants?

Simulation of Iberian Markets

Input Data

MASCEM Multi-Agent Simulator of Competitive Electricity Markets

Gabriel Santos, ISEP

MASCEM Overview

5

Aggregators

MIBEL Overview

- Double-sided auction-based
- 24 hourly periods
- Day-ahead
 - 1 to 25 energy-price pairs per Bid
 - Complex conditions
- Intraday

- Buyers can sell
- Sellers can buy
- Complex conditions
- Auction-based vs Continuous (SIDC)
- Market splitting
 - If there is congestion in the cross-boarder lines

https://www.omie.es/en/mercado-de-electricidad

MASCEM integration in Spine Toolbox

Multi-Agent Simulator of Competitive Electricity Markets

https://em.gecad.isep.ipp.pt/

https://pf.gecad.isep.ipp.pt/

http://www.spine-model.org/spine_toolbox.htm https://github.com/Spine-project/Spine-Toolbox

Find out more

- 1. Gabriel Santos, Tiago Pinto, Isabel Praça, Zita Vale, "MASCEM: Optimizing the performance of a multi-agent system," Energy, vol. 111, pp. 513-524 (2016). DOI: 10.1016/j.energy.2016.05.127.
- 2. Tiago Pinto, Zita Vale, Isabel Praça, Luis Gomes, Pedro Faria, "Multi-Agent Electricity Markets and Smart Grids Simulation with connection to real physical resources". In "Electricity Markets with Increasing Levels of Renewable Generation: Structure, Operation, Agent-based Simulation and Emerging Designs". F. Lopes, H. Coelho (Eds). Springer Int. Publishing (2018). DOI: <u>10.1007/978-3-319-74263-2_11</u>
- 3. Gabriel Santos, Tiago Pinto, Hugo Morais, Isabel Praça and Zita Vale, "Complex market integration in MASCEM electricity market simulator," 2011 8th International Conference on the European Energy Market (EEM), Zagreb, Croatia, 2011, pp. 256-261. DOI: <u>10.1109/EEM.2011.5953019</u>.
- Gabriel Santos, Tiago Pinto, Zita Vale, Hugo Morais, and Isabel Praça, "Balancing market integration in MASCEM electricity market simulator," 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 2012, pp. 1-8. DOI: <u>10.1109/PESGM.2012.6345652</u>.
- 5. Isabel Praça, Carlos Ramos, Zita Vale and Manuel Cordeiro, "MASCEM: A Multi-Agent System that Simulates Competitive Electricity Markets", IEEE Intelligent Systems, vol. 18, No.6, pp. 54-60, Special Issue on Agents and Markets, 2003. DOI: <u>10.1109/MIS.2003.1249170</u>

TradeRES

New Markets Design & Models for 100% Renewable Power Systems

RESTrade: Balancing markets

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 864276

Traditional Balancing Markets

Typical Balancing Markets managed by each country TSO

manual-FRR (mFRR) aka Tertiary Control;

New design

aFRR Capacity market

	aFRR	ENTSO-E Secondary (aFRR) capacity procurement		
	Capacity	Symmetrical based on the expected maximum demand		
		Portuguese Secondary capacity procuremen Asymmetrical based on the expected maximum demand Upward capacity is the double of the downward capacity	nt	
		Dynamic Secondary capacity procurement	New desig	
		Based on variable generation and consumption forecasts Separate procurement of upward and downward capacity		

Market mechanisms

Energy

mFRR Energy

Marginal Pricing

Asymmetrical auction clearing

Pay-as-bid

Automatic match of opposite bids

Imbalance Settlement

Double-pricing Portuguese rule

Single penalty, all Balance Responsible Parties (BRPs) pay energy FRR. No cash-flow (CFs) surplus or deficit to TSOs.

Single-pricing Nordpool/Spanish rule

Obtain imbalance direction, only BRPs that deviate in the imbalance direction directly pay energy FRR, others do not pay penalties. CFs surplus or deficit to TSOs.

Double pricing and penalty rule

New design

BRPs directly pay the penalties of the FRR energy used to balance their deviations according to its direction. No CFs surplus or deficit to TSOs.

New market designs

New market designs

Separate procurement of upward and downward capacity

Rolling gate closures closer to real-time operation

New market designs

Separate procurement of upward and downward capacity

Rolling gate closures closer to real-time operation

Shorter products

Shorter market time units

Data and Results

17

The Iberian Power Systems in 2019

2019 Capacity (MW)	Portugal	Spain
Coal	1 800	9535
Fuel oil	400	0
Natural gas	3 800	24 945
Nuclear	0	7 400
Hydro	7 000	14 796
Wind	5 400	23 507
Solar	2 000	7 018
Biomass	400	0
Other	430	1 038
Total Generation	21 230	88 239
Pumps	2 700	3 418
Interconnection	3 200	2 200

The Iberian Power Systems

Portuguese Generation

Spanish Generation

Iberian Simulation

- Agent-based MATREM and RESTrade simulators:
 - Day-ahead, balancing and imbalance settlement markets were simulated using bids of agentbased market players
- Input conditions:
 - > 2019 power plants capacity, consumption, market designs and commodity prices
- Support/market remunerations schemes studies:
 - 1. Variable premium
 - 2. One-way CfDs
 - 3. Two-way CfDs
 - 4. Capped premium
 - 5. Fixed premium

2019 Iberian Results

are

2019 Market-based cost recovery

2019 support schemes

• The specific case of the wind power producers:

Conclusions

Portugal and Spain had 55% and 63% shares of non-fossil generation in 2019, respectively.

Can energy-only marginal markets remunerate power plants?

- High shares of renewable power plants with near zero marginal costs decrease the market prices of marginal markets
- Furthermore, the transition to a nearly 100% renewable share will reduce the working hours of fossil fuel power plants
- Support schemes and other incentives are needed to guarantee investments

New market designs shall guarantee the financing viability of new assets with practically only CAPEX costs.

TradeRES

New Markets Design & Models for 100% Renewable Power Systems

Thank you for your attention. Questions?

EERA-ESI TradeRES Workshop, 28th June 2023

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 864276