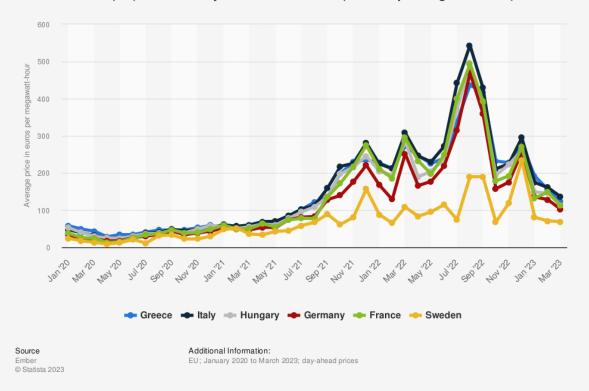


Options for a future ~100% renewable electricity market design

Laurens de Vries (TU Delft)


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 864276

European Energy crisis

- Physical supply was managed: no black-outs
- Efficient short-term dispatch
- Economic energy crisis ($\uparrow \pi$)
- Consumers were hit by record high prices
- Financial problems for retailers
- Unexpected revenues for generators

Average monthly electricity wholesale prices in selected countries in the European Union (EU) from January 2020 to March 2023 (in euros per megawatt-hour)

Electricity market performance

- Short term signals (wholesale)
 - Promoted system efficiency
 - Need of more flexibility
- Consumers were not protected
 - Need to allow consumers to hedge risk
 - Promote electrification
- Need to ensure investment
 - Failure to send long-term investment signals
 - Speed up vRES penetration at lowest cost

EU market reform

- Protect consumers from volatile energy prices
 - Hedging opportunities
 - Emergency mechanism, cap prices
- Stability and predictability of energy prices
- Promoting investments in renewable energy by de-risking it
 - CfDs
 - PPAs
- Stimulate non-fossil flexibility with capacity mechanisms

Strasbourg, 14.3.2023 COM(2023) 148 final

2023/0077 (COD)

Proposal for a

REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

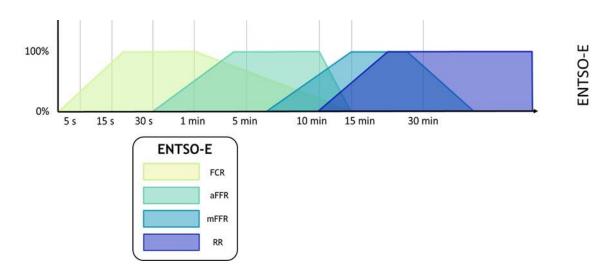
amending Regulations (EU) 2019/943 and (EU) 2019/942 as well as Directives (EU) 2018/2001 and (EU) 2019/944 to improve the Union's electricity market design

TradeRES market design topics

- Wholesale market design
- Transmission networks
- Retail markets
- System adequacy
- De-risking investment in vRES
- Ancillary services

Wholesale market design

- Shorter lead times between market closure and delivery time;
- The implementation of a rolling time-horizon market clearing process;
- Trade shorter time units, e.g., of 30, 15 or 5 minutes ;
- The organization of the intraday market


Retail markets

- Design of network tariffs + energy prices
- Capacity subscription
- Real time signals
- Role of retailers and aggregators in enhancing flexibility

Ancillary services

- Reformed to allow new resources
 - vRES
 - Storage
 - Demand response
- Critical changes
 - Smaller minimum bid sizes
 - Aggregation of resources
 - Asymmetrical bids
 - Passive balancing
 - Introduction of flexible ramping products
 - Introduction of fast frequency response
 - Procurement of inertia by TSOs

De-risking investments in vRES

- Two-way CfDs
 - Price certainty
 - Auctioning contracts
 - Potential risk of suboptimal dispatch
 - Design parameters as Financial CfDs
- Power Purchase Agreements (PPAs)
 - Hedge for short-term volatility to consumers
 - Confidentiality might result in a reduction of the competition among vRES
 - PPAs by themselves they are not able to motivate the needed investment in vRES

System adequacy

- Uncertainties associated to investment
 - Weather variations (hourly but also yearly)
 - Technology risks
 - Import supply shocks
 - Network development
 - Consumer strategies for decarbonization
 - Transition policy
- Solutions:
 - Reliability options,
 - Capacity subscription,
 - A combination?

Conclusions

- Energy crisis was mainly economic
- Current electricity market is not fit for the transition
 - Too much risk for vRES, firm capacity and for consumers.
- Future market design:
 - Short-terms markets for efficient dispatch
 - De-risking investment in vRES (CfDs)
 - Reliability options + capacity subscription to hedge consumers

Thank you for your attention