
 

D4.4 - New actor types in electricity 
market simulation models 

Deliverable number: D4.4 

Work Package: 4 

Lead Beneficiary: Imperial College 

  



 

Page ii of vii 

Author(s) information (alphabetical) 

Name Organisation Email 

António Couto LNEG antonio.couto@lneg.pt 

Christoph Schimeczek DLR christoph.schimeczek@dlr.de 

Dawei Qiu Imperial College d.qiu15@imperial.ac.uk 

Débora de São José ISEP drj@isep.ipp.pt 

Dimitrios Papadaskalopoulos Imperial College d.papadaskalopoulos08@imperial.ac.uk 

Goran Strbac Imperial College g.strbac@imperial.ac.uk 

Hugo Algarvio LNEG hugo.algarvio@lneg.pt 

Ingrid Sanchez TU Delft I.J.SanchezJimenez@tudelft.nl 

Johannes Kochems DLR johannes.kochems@dlr.de 

Kristina Nienhaus DLR kristina.nienhaus@dlr.de 

Laurens De Vries TU Delft l.j.devries@tudelft.nl 

Nikolaos Chrysanthopoulos Imperial College n.chrysanthopoulos@imperial.ac.uk 

Tiago Pinto ISEP tcp@isep.ipp.pt 

 

Acknowledgements/Contributions 

Name Organisation Email 

Ana Estanqueiro LNEG ana.estanqueiro@lneg.pt 

 

Document information 

Version Date Dissemination Level Description 

1.0 31.08.2021 Public This report explains the representation of 

actor types and behaviour in the market 

simulation models. First version (M19). 

2.0 30.06.2022 Public Final version (M29) 

 

Review and approval 

Prepared by Reviewed by Approved by 

Nikolaos Chrysanthopoulos 

Dawei Qiu 

Goran Strbac 

Milos Cvetkovic (TU Delft) Ana Estanqueiro 

 

Disclaimer  

The views expressed in this document are the sole responsibility of the authors and do not necessarily reflect the views or 
position of the European Commission or the Innovation and Network Executive Agency. Neither the authors nor the 
TradeRES consortium are responsible for the use which might be made of the information contained in here.   



 

Page iii of vii 

Executive Summary 

The modelling of agents in the simulation models and tools is of primary importance if 

the quality and the validity of the simulation outcomes are at stake. This is the final version 

of the report that deals with the representation of electricity market actors’ in the agent-

based models (ABMs) used in TradeRES project and it was developed within the scope of 

Task 4.2 - Representation of new actors, markets and policies. With the ABMs available in 

the consortium (AMIRIS, the EMLab, the MASCEM and the RESTrade) being in the cen-

tre of the analysis, the subject matter of this report has been the identification of the ac-

tors’ characteristics that are already covered by the initial (with respect to the project) ver-

sion of the models and the presentation of the foreseen modelling enhancements. 

For serving these goals, agent attributes and representation methods, as found in the 

literature of agent-driven models, are considered initially. The detailed review of such as-

pects offers the necessary background and supports the formation of a context that facili-

tates the mapping of actors’ characteristics to agent modelling principles. Emphasis is 

given to several approaches and technics found in the literature for the development of a 

broader environment, on which part of the later analysis is deployed. Although the ABMs 

that are used in the project constitute an important part of the literature, they have not 

been included in the review since they are the subject of another section. 

The identification of modelling needs follows the operational and behavioural character-

ization of actors that has already concluded with the release of the first version of D3.2 - 

Characterization of new flexible players. The operational attributes and the behavioural 

aspects that have been assigned to actor classes are used as a reference for the review 

of the four ABMs used in the project. The initial versions of the models have been re-

viewed against those relations, revealing the not covered relations, which are considered 

as potential modelling enhancing directions. Such modelling enhancing activities are iden-

tified and allocated to models, with the outcome of this process being reported through an 

extra layer of information that is positioned on top of the relational tables that have been 

previously deployed, in the context of D3.2. 

The more detailed consideration of the ABMs that follows next includes a model-by-

model analysis of the agent instances of the initial versions and a description of the 

scheduled improvements. As the agent modelling enhancement is a part of the broader 

process of ABMs evolution and coupling for enabling them to assess the market design 

propositions of D3.5 - Market design for a reliable ~100% renewable electricity system, 

this work is closely related to other WP4 deliverables. This final version of the deliverable 

incorporates perspectives of other subtasks of WP4 that have developed in parallel to 

T4.2 and have already concluded. This version also aims to be a reference for other ongo-

ing and forthcoming deliverable reports that address flexibility options modelling (D4.1-

D4.3) and the market design modelling requirements (D4.5). 

Finally, the representation of the actors involved more at the local level (the supplier, 

the prosumer and the local energy market operator) is presented from the perspective of 

the Local Energy Market Simulation Framework that is to be used complementary to the 

participating ABMs for the study of interactions and outcomes of local markets. 
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1. Introduction 

Market simulation models and tools have been for several years widely used in sup-

porting decision making and assisting in the formation of evidence-based policy recom-

mendations. Their evolvement has been remarkable, following the digital revolution pro-

gress, with the more recent versions incorporating state-of-the-art approaches that follow 

contemporary trends in areas related to artificial intelligence, big data and cloud compu-

ting. 

Major advancements have been made in simulating systems of multiple agents that are 

characterised by complex dynamics due to multidirectional interactions, with the more 

notable case being that of electricity markets simulation tools. The agent-based modelling 

approaches present several advantages in that context, while they face certain challeng-

es. The easier and more flexible representation of market structures through the adopted 

interaction framework, along with the modularity of the implementations, are among the 

advantages compared to other modelling approaches which are solved analytically. Diffi-

culties with scalability combined with limitations inherited from learning and adaptation 

processes are some indicative drawbacks. 

Important part of the modelling implementation is the representation of agents inside 

the models, with the incorporation of behavioural and operational aspects being directly 

connected to the realism level of the simulation framework. The agents are at least de-

scribed by attributes that assign characteristics and methods that provide the required 

functionality properties imposed by the operations. The identification of actors’ behavioural 

and operational characteristics that enhance the realism and support the validity of mod-

els is a challenge that modellers usually face, while they try to maintain a balance be-

tween the model complexity, the quality of results, the value of the extracted conclusions 

and the traceability of causal relationships. 

1.1 Scope of the deliverable 

This deliverable focuses on the representation of electricity markets’ actors in the mar-

ket simulation models and tools used in TradeRES projects, while aims to identify model-

ling priorities, sketch directions of enhancements and pave the ground towards agent-

related developments. The four agent-based models (ABMs) that are to be linked within 

the model linkage toolbox developed in WP4 are namely the AMIRIS, the EMLab, the 

MASCEM and the RESTrade, which have been presented in D4.6 - Market model com-

munication interfaces [1]. With these models putting their focus on either the investment 

recovery or the operational dispatch problem, while the combinations emerging from their 

potential coupling cover both, the incorporation of actors’ characteristics can support the 

impact assessment of market designs. This work has been conducted in the context of 

T4.2 that aims to tackle the representation of actors, markets and policies into the models. 

The incorporation of elements resulted from the characterization of market players, espe-

cially in the case of new flexible players, that took place in WP3 and provided the qualita-

tive context for the further analysis is expected to empower the models to assess the per-

formance of players and evaluate the proposed market designs. Finally, it should be men-
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tioned that this final version of the “New actor types in electricity market simulation tools” 

report is building upon the development of the first version that was submitter in M19. 

1.2 Structure of the deliverable 

The deliverable initially provides an overview of the agents in market simulation tools 

and agent-based models. Section 2 considers modelling approaches at a high-level with 

the literature review providing the ground for the further, more project specific, technical 

elaboration, that follows at later parts of this report. Moreover, the consideration of differ-

ent modelling approaches when certain market components and involved actors are at 

stake, provides some state-of-the-art indications about modelling improvements. Some 

methods of agent functioning are also covered, with emphasis on learning approaches 

since other aspects are covered afterwards. 

The conceptualization framework of actors in electricity markets that have been report-

ed in D3.2 - Characterization of new flexible players [2] is taken into consideration in Sec-

tion 3 and direct linkage is employed, following the survey activity that took place under 

the umbrella of the T3.2 and T4.2.1. An extra layer of information has been added on top 

of the relational tables deployed in D3.2, which provided a mapping of relations between 

actor classes and technologies, operational and behavioural characteristics. The extra 

layer of information describes the coverage by the initial versions1 of the ABMs, while at 

the same time points out the directions of modelling enhancements that have been identi-

fied. 

Section 4 elaborates further and extends the initial version description highlighting the 

enhancement direction on a per model basis. The analysis starts with a description of 

agent representation principles and agent-related modelling concepts that have been 

adopted in the initial version of each of the ABMs. In the second subsection new agents 

plans and other model enhancing directions are presented, giving extensive overview of 

the undergoing interventions for incorporating additional characteristics, improving the 

agent representation and supporting superiority of model outcomes. 

In Section 5, the representation of the actors strongly involved in the local level is pre-

sented from the perspective of the LEM Simulation Framework that is to be used in the 

Local Energy Communities case study. Two Local Environments are defined – the Broad 

and the Narrow – with the focus being different in each one of them. In the former, the 

focus is on the interaction between actors belonging in different layers (Physical, Aggrega-

tion, Market) and in the latter the emphasis in the local market and the internal mecha-

nisms. In that context, the supplier, the prosumer and the LEM operator are discussed 

                                                                            

 

1
 Initial are considered the versions with respect to the project. These are the most recent versions of the 

models that have been developed outside of TradeRES project and are used as the basis for modelling en-

hancements. Each model follows its own versioning system.   



 

Page 3 of 63 

with the example formulations making the necessary links to the operational and behav-

ioural dimension analysis of D3.2. 

Finally, this report concludes in Section 6 with a summary of the approaches and tech-

nics adopted for the translation of actors’ types to agents of the simulation models used in 

TradeRES project and an encapsulation of the directions of model enhancements. 

1.3 Relationship with other deliverables and tasks 

This deliverable builds upon concepts initially tackled in WP3 and extends the work 

conducted in T3.2 around the characterization of electricity market actors in both the be-

havioural and operational dimension. Therefore, the inputs received from D3.2 have been 

several, with the key actor categories, the relational tables and the (electricity market) 

Actor-ID cards being among the most notable ones. Following the progress made in T4.2 

and more specifically the identified modelling priorities and the implementable technics 

some feedback is expected to be provided back to the actor characterization framework 

considered in WP3, in the context of the final reporting of T3.2 developments. 

There is a strong connection with other WP4 deliverables and tasks as well. More pre-

cisely, this report considers the agent implementations of various actor classes such as 

producers, suppliers, aggregators and prosumers, which are directly related to flexibility 

aspects, namely the temporal, the sectoral and the spatial. Several agents inherit charac-

teristics and incorporate aspects originating from distributed generation (DG), demand 

side response (DR), energy storage systems (ESS) and electric vehicles (EVs), the repre-

sentation of which has led to several interrelations between tasks and deliverables. The 

market design dimension that affects the incorporation of flexibility options puts also the 

framework of actors’ participation in markets and sets the interaction context of agents. 

Therefore, there is influence from D3.2 and D4.5 - New market designs in electricity mar-

ket simulation models [3] as well. Figure 1 depicts this information exchange between 

tasks and the interrelation of the deliverables. 

 

Figure 1: Schematic representation of relations with other tasks and deliverables. 
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This deliverable is accompanied by a series of other deliverables from TradeRES Work 

Package 4. The first three deliverables (D4.1 - D4.3) were published close to the first ver-

sion of D4.4, while D4.5 has been developed concurrently with this report in T4.2. Please 

refer to the following deliverables to gain deeper insights on the specific topics: 

 Deliverable 4.1 [4] covers model enhancements with respect to temporal flexibility. 

 Deliverable 4.2 [5] focusses on the implementation of sectoral flexibility within 

TradeRES models. 

 Deliverable 4.3 [6] describes spatial flexibility options and their implementation in 

TradeRES models. 

 Deliverable 4.5 covers modelling requirements for new market designs and policy 

options that shall be studied within TradeRES. 

Finally, it should be stated that this version of the deliverable has been influenced by 

the evolvements in WP5, where the simulations take place and the corresponding models 

run and are validated. It is also expected this report as well as the developments de-

scribed here contribute to some of the tasks of WP5, specifically in the analysis and inter-

pretation of the results. 
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2. Overview of actors in market simulation tools 

2.1 Overview of electricity markets and agent-based 
approaches 

Power systems across the world are currently undergoing fundamental changes, turn-

ing from fossil fuels to clean energy sources, mainly driven by the need of reducing the 

increasing levels of greenhouse gases emission and mitigating the associated environ-

mental and climate change concerns, while taking into consideration the increasing de-

mand peaks and the electrification of other sectors. To this end, power systems are facing 

the challenge of decarbonization and there is increasing attention to the deployment of 

renewable energy sources (RES), such as solar, wind, hydro, tidal, and biomass. Howev-

er, the majority of these sources are inherently characterized by high variability and limited 

predictability and controllability. 

Furthermore, the ongoing efforts towards the deregulation of power systems have in-

troduced competition among multiple self-interested (profit-driven) market actors, leaving 

behind the centralized models of social welfare maximization, that were imposing perfect 

competition conditions through the price-taking assumption and the marginal cost consid-

eration. Such competitions exhibit everywhere in generation, supply, and consumption 

sectors [7]. This paradigm change implies that traditional centralized models face many 

limitations when accurate market-related insights are at stake, since self-interested market 

agents’ actions are not generally aligned with social optimality and externalities exist. New 

market models are required instead, which should be capable to simulate complex behav-

iours and even capture the strategic (price-making) interaction of self-interested market 

agents, for the assessment of market outcomes, which emerge from the interactions of 

these agents and driven by appropriate market designs. 

Figure 2 presents a general perspective of energy interactions among different levels of 

power system decision makers in the deregulated electricity markets. In this framework, 

electricity producers are the first-level decision makers, electricity suppliers and aggrega-

tors are the second-level decision makers and end-customers (e.g., consumers, prosum-

ers, distributed energy resources (DER), local energy market) are considered as the third-

level decision makers [8]. Other participants, due to their functionalities, may be located at 

each level of this framework. A detailed analysis of the actors in electricity markets has 

been already performed in the project, with the overview being available in D3.2. The first- 

and second-level decision makers are coupled with each other in the wholesale electricity 

market, which is managed by the market operator. The second- and third-level decision 

makers are coupled with each other in the retail electricity market level. Finally, a part of 

end-customers (e.g., micro-generators and distributed energy storages) providing local 

generation and storage capability is coupled with local demands into local energy mar-

kets. As far as the markets are concerned, more details along with market design consid-

eration that have been deployed for the needs of TradeRES project can be found in D3.5. 

So far, the existing techniques solving the deregulated electricity markets with imper-

fect competition and strategic behavioural concerns, mainly focus on the game theoretic 
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modelling (GTM) [9], [10], of which Bi-level optimization constitutes the most widely em-

ployed methodological framework for developing such market models over the last dec-

ades. The popularity of this methodology lies in its ability to capture the interaction be-

tween the strategic decision making of self-interested players (modelled in the upper level 

- UL) and the competitive clearing of the electricity market (modelled in the lower level - 

LL) [11]. The Bi-level optimization problems are usually solved after converting them to 

single-level Mathematical Programs with Equilibrium Constraints (MPEC), through the 

replacement of the LL problem by its equivalent Karush-Kuhn -Tucker (KKT) optimality 

conditions. Nevertheless, this modelling framework exhibits several fundamental limita-

tions: 1) the UL agents require knowledge of the computational algorithm of the market 

clearing process and the operating parameters of their competitors; 2) the LL problem 

does not include any binary/integer decision variables since the derivation of the equiva-

lent KKT optimality conditions is only possible when this problem is continuous and con-

vex; 3) the stochastic parameters of the market models are difficult to handle, since the 

computation cost is significantly increased with the scenario-based stochastic optimization 

problem [12]. 

 

Figure 2: The deregulation of electricity markets [13]. 

Agent-based modelling (ABM) has received increasing attentions in recent years owing 

to its advantages in modelling large-scale complex and stochastic systems [14]. ABM re-

fers to a category of computational models that invoke dynamic action, reaction, and in-

tercommunication protocols amongst the agents in their shared environment, which is 

very suitable for current deregulated electricity market. These models incorporate these 

aspects for evaluating the performance of agents and also, derive insights about their 
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emerging properties and behaviour. Therefore, ABM can model the complex issues in the 

electricity markets as they can model the complex behaviour of the system participants 

including asymmetric information, different bidding strategies etc. Also, for large systems 

with various system participants interacting with each other and playing different roles, 

ABM is more suitable as they can reproduce the decision behaviours of real-world market 

participants. Although the optimal solutions are not guaranteed with respect to the game-

theoretic modelling, ABM has been successfully used for investigating many real-world 

complex electricity market problems [15]. 

Rule-based control (RBC), Genetic algorithm (GA), and Reinforcement learning (RL) 

constitute the main methods adopted from agents in ABM approaches. RBC is the sim-

plest control method that consists of a knowledge base and an inference engine. The prior 

defines the set of rules that govern the operations, and the latter takes actions based on 

the input data and the corresponding rules [16]. GA, on the other hand, is a set of ma-

chine learning algorithms which are used to search for the optimal solution of a problem. 

The term “genetic” refers to the evolutionary searching manner which imitates the evolu-

tion processes in nature: selection, crossover, and mutation [17]. Reinforcement learning 

(RL) is one of the most popular methods for Digital agents in recent years. RL solves the 

problem in a recursive fashion, the agents (i.e., electricity producers) gradually learn how 

to improve their strategies by utilizing experiences acquired from their repeated interac-

tions with the environment (i.e., market clearing algorithm). In detail, the electricity market 

problems are formulated a dynamic programming, where the agents interact with the envi-

ronment by acquiring the experiences from bidding strategies, market outcomes of clear-

ing prices, quantities, and profits. As a result, the agent does not require any information 

of the market clearing algorithm, while assuming it as a black box. In addition, instead of 

solving a scenario-based optimization problem, RL captures system dynamics and sto-

chasticity by learning from the interaction with the environment. Finally, once the model is 

well trained, the policy can be tested in any dataset in milliseconds, with solving an opti-

mization [12]. 

The electricity market is operated including different stakeholders, who are capable of 

interacting with each other and are represented in ABMs via agents. As discussed in Sec-

tion 2.1.1, the wholesale market links the operation between electricity producers and 

electricity suppliers and aggregators, which in its organised form usually features a cen-

tralized market clearing mechanism. The focus of the research around the wholesale side 

is on the market and auction design as well as on the investment and bidding strategies of 

large traders (e.g., electricity producers) [18]. Agent instances have been proposed to 

help these large traders adaptively adjust their decisions in a highly competitive, stochas-

tic, and dynamic market. On the other hand, consumers (prosumers) in the retail market 

have less ability to affect the market outcomes but are difficult to be managed by the sup-

pliers and aggregators, since consumers in the distribution levels are characterized by 

their large quantities and diversities. To this end, strategic retail pricing scheme offered by 

suppliers is a symmetrical manner to address this issue and somehow mitigates the risks 

from both wholesale and retail sides. ABMs with agents that adopt learning algorithms 

have been recently used for modelling electricity retailer problems. The cases where 

learning technics have been incorporated for the forecasting of the served demand con-
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sumption (e.g., Long short-term memory) [19], and the pinpointing of strategic retail prices 

for consumers (e.g., RL) [20] are among the indicative ones. Finally, with the development 

and deployment of smart meter technologies, consumers with flexibility are encouraged to 

response to the retail price signals by shifting part of their demand from peak periods with 

high prices to the off-peak periods with low prices, so as to reduce the energy bills and 

demand peaks. ABM is adopted here for its advantages of modelling the heterogeneity of 

consumers [21]. 

2.2 Representation of actors through agents 

Having reviewed the electricity market mechanisms of wholesale market, retail market 

and local energy market as well as the approaches of ABM in Section 2.1, this section lies 

in discussing about the modelling approaches around the representation of operations 

and behaviours of certain key actors, including electricity producers, suppliers, aggrega-

tors, local consumers / prosumers (e.g., distributed DR, DG, EVs, and ESS). 

2.2.1. Electricity producers 

Electricity producers play the role of energy production and behave in two-level deci-

sion-making processes of short-term operation and long-term planning, as depicted in 

Figure 3 [22]. 

 

Figure 3: Two-level decision making by electricity producers. 

In the first level, electricity producers participate into electricity market by submitting the 

short-term strategic offers and the interest of studies is focused on the resulting market 

efficiency or the excursion of market power [23]. Therefore, one of the key aspects of any 

electricity market design is the bidding structure, i.e., the format based on which market 

participants submit their techno-economic characteristics, preferences, and requirements 

to the market clearing engine. The key challenge behind determining a suitable bidding 

structure lies in the fact that the physical operating characteristics of most market partici-

pants are complex, time-coupling and non-convex. Simple bids usually consist of a set of 

pairs of energy quantity and desired price. The market clearing process lies in building a 

supply and a demand curve considering the submitted simple bids and determining the 
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market clearing outcome from their intersection. Complex bids allow the market partici-

pants to explicitly reveal all their complex operating characteristics and factor these in the 

market clearing process, rendering the market operator responsible for satisfying the 

physical constraints of the market participants. In addition to price-quantity pairs, complex 

bids include a representation of the entire set of the participants’ cost components and 

technical constraints. Outside of the wholesale market, electricity producers are also al-

lowed to sign bilateral contracts directly with the suppliers and large consumers. In this 

case, the market risks caused by the renewable energy and demand consumptions can 

be mitigated via the pre-determined contract. 

In the second level, long-term planning strategies are developed, with the interest to 

study the electric power system transition at the time scales varying from years to dec-

ades. These studies are usually performed to assess the influence of specific factors such 

as renewable energy support design and CO2 market design on the evolution of the sys-

tem [24]. On the one hand, new market-based generation investment planning models are 

required in current deregulated setting, capturing the effort of self-interested electricity 

producers to maximize their long-term profits while accounting for the impact of their in-

vestment decisions on the competitive electricity market. On the other hand, a strategic 

investment decision is required to handle the stochasticity and dynamics of the market 

conditions over the planning horizon. 

2.2.2. Electricity suppliers and aggregators 

Suppliers in the retail electricity market are supposed to purchase electricity in the 

wholesale electricity market and resell it to their subscribed end-user customers through 

assigning appropriate retail prices, either in a temporal variance way or at a flat rate. Cur-

rently, the electricity retailer is usually operated as an entity that is independent of any 

generation or distribution company [25]. A retailer (which is a role that can also be taken in 

practice by electricity suppliers) represents a large number of end-consumers in the 

wholesale market and coordinate their operation according to the market conditions (day-

ahead planning, real-time rescheduling) and the consumer types (residential, commercial, 

industrial) to maximize its overall profit. The decision-making process involved in buying 

and selling strategies usually contains some volatile market risks. Especially with the fur-

ther deregulation of the electricity market, along with the development of demand re-

sponse (DR) and the proliferation of DERs, suppliers participating in both the wholesale 

market and the retail market should carefully design their buying-selling trade-off and elec-

tricity portfolio [25]. 

Aggregators are responsible to coordinate local DERs to reduce the upstream genera-

tion and transmission capacity requirements, by providing local flexibility, avoiding network 

reinforcement, reducing energy costs, etc. [26]. The concept of aggregators has been 

proposed to coordinate these local agents as virtual power plants (VPPs). A range of 

strategies have been investigated to operate a VPP, which can be broadly divided into two 

categories: direct strategies that control individual resources, and indirect strategies that 

send signals (e.g., price signals) to influence the consumption and generation decisions of 

prosumers. Different strategies have advantages for specific applications. The optimality 

is guaranteed under the direct strategies since VPP as a central coordinator can directly 
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optimize the energy schedules of all resources. However, knowing all the operation mod-

els and technical parameters are normally impractical for real-world applications. To ad-

dress this issue, indirect strategies via digital agents are proposed to optimize the energy 

schedules, that only require limited information. 

2.2.3. Electricity consumers and prosumers 

In most scenarios, customers play a role of energy consumption in retail electricity, 

purely serving as consumers of energy at the retail side. However, decentralization consti-

tutes one of the main features of the emerging smart grid. Specifically, a large number of 

small-scale DERs, including flexible loads, micro-generators and micro-storages, are in-

creasingly being connected to the distribution network, with the overall objective of provid-

ing the required flexibility to support the cost-effective development of low-carbon electrici-

ty systems. Subsequently, traditional electricity consumers evolve to prosumers, who can 

proactively schedule their energy consumption, production, and storage of electricity [27]. 

Flexible demand (FD) is based on the idea that the electricity use of consumers chang-

es from their normal consumption patterns to the price of electricity over time. On the one 

hand, FD is used to induce lower electricity use at periods of high retail prices and higher 

electricity use at periods of low retail prices. On the other hand, FD involves temporal re-

distribution of consumers’ energy requirements. As a large number of researchers have 

stressed, consumers’ flexibility regarding electricity use mainly involves shifting of their 

loads’ operation in time instead of simply avoiding using their loads. In other words, load 

reduction during certain periods is accompanied by a load recovery effect during preced-

ing or succeeding periods. This shift of energy demand from different periods drives a 

demand profile flattening effect. 

The role of the energy storage in the energy markets and in trading will become more 

significant as the ESS technology becomes more viable in tecno-economic terms and its 

penetration in the energy system increases [28]. The usage of ESS may vary in scale, 

with the operational goals being different as well. More centralised infrastructures inte-

grated to large-scale vRES generation (e.g., PV plants, wind farms, etc) aim to smooth 

and control the output of the system. Alternatively, on their distributed form, ESS can en-

hance self-consumption of local communities, support the active management of the dis-

tribution network and reduce the demand peaks. 

The extensive adoption of EVs, which primarily aim to offer clean and cost-effective 

transportation, enhances the electric energy storage capabilities and not only facilitates 

the transition to the integrated and decarbonised energy system paradigm but also makes 

EVs a natural player in energy trading. The bidirectional chargers are the technical ena-

blers of the exchange of electric power between the EVs and the grid, making the vehicles 

and their users interacting with other market participants under either the Grid-to-Vehicle 

or the Vehicle-to-Grid mode. 

However, this paradigm changes greatly complicate the operation of the system, as the 

effective coordination of such large numbers of DERs involves very significant communi-

cation and computational scalability challenges as well as privacy concerns, since DER 

owners, in certain cases, may not be willing to disclose private information and be directly 

controlled by external entities. To develop strategies for these challenges, policy makers 
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and planners need knowledge of how these DER can be integrated effectively and effi-

ciently into a competitive electricity market. Local energy market (LEM) [29] has recently 

emerged as an interesting approach to deal with these coordination challenges, as the 

global coordination burden is broken down to the coordination of local market clusters, 

each grouping a number of customers with DERs, coordinating the energy exchanges 

between them and the upstream grid and addressing local network problems. Beyond this 

coordination benefit, the local matching of power reduces net demand peaks and network 

losses, resulting in avoidance or deferral of capital-intensive network reinforcements. 

2.3 Methodologies for agent-based decision-making process 

2.3.1. Rule-based Control 

As conceptually RBC is based on predetermining the logic of the agents, it is very 

much dependent to the design approach as it requires domain-specific expertise as well 

as knowledge of the criteria and their importance in decision making process. In certain 

cases, the rule-based approach can be easily represented, communicated, and under-

stood given that there are transparent causality links [30]. Currently, RBC is widely used 

for automatic control problems in smart grid applications. Authors in [31] proposed a pre-

dictive rule-based control to activate the energy flexibility of a residential building. Authors 

in [32] proposed a two-step rule-based strategy for prosumers participating into local en-

ergy sharing market. Furthermore, RBC is also a popular method as the benchmark for 

many advanced algorithms, e.g., RBC is constructed as the baseline of reinforcement 

learning algorithm for local trading behaviour modelling [33] and EV real-time smart charg-

ing behaviour [34]. However, rule bases do not scale efficiently making the RBC approach 

less adequate for large problems that are characterised of high complexity. 

2.3.2. Genetic Algorithm 

GA is a type of evolutionary algorithm that can be used for optimization. GA is widely 

used in complex electricity market applications due to its ability to find good solutions with 

a limited number of simulation iterations. Compared to the RBC, GA does not require any 

knowledge of the examined market, but improves its solutions based on the fitness func-

tions acquired from the market clearing outcomes. In [35] the authors proposed a frame-

work for a generation expansion planning applicable in a competitive environment using 

GA. Authors in [36] used GA to find a strategic bidding decision in electricity market with 

the objective of maximizing economic profits and minimizing the financial risks. On the 

retail side, authors in [37] proposed a bi-level optimization approach between strategic 

retail pricing and demand response problems, while GA is adopted to overcome the infea-

sibility of conventional Karush–Kuhn–Tucker (KKT) approach considering that the lower-

level demand response problem is non-convex. 
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2.3.3. Reinforcement learning 

 Single-agent reinforcement learning 

We now describe the background of single-agent reinforcement learning (SARL) [13]. 

General in the agent-based learning but also specifically in reinforcement learning the 

agent is considered the main entity and it is assumed to interact with the environment. 

Consequently, the Agent and the Environment objects can be described as follows: 

1. The Agent is perceiving the status of the environment (State) through its in-

teraction and receives some feedback (Reward). The agent presents some 

form of intelligence as they can perform learning functioning, through which 

the decisions (Action) are made and improved. The decision-making process 

of the agent is conditional to the external environment since the selection of 

the action is made according to the state. The learning functionality of the 

agent is the observation of the external environment and the formation of a 

strategy according to the reward. 

2. The Environment from a practical point of view, consist of the elements that 

are outside the agent object, with the state being affected by the action of the 

agent, with the related reward being awarded to the agent. 

 

Figure 4: Agent-environment interactions in SARL [38]. 

In SARL, an agent acts within an environment by sequentially taking actions over a 

sequence of time steps 𝑡 ∈ 𝑇, in order to maximize a cumulative reward, as illustrated 

in Figure 4. RL can be defined as a Markov Decision Process (MDP) which includes: 

a) a state space 𝒮: a collection of the environment state; 

b) an action space 𝒜: a collection of the agent’s actions; 

c) a policy 𝜋(𝑎|𝑠): a function of the agent to decide the next action according to 

the environmental state; 

d) a dynamics distribution with conditional transition probability 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡), 

satisfying the Markov property, i.e. 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) = 𝑝(𝑠𝑡+1|𝑠1, 𝑎2, … , 𝑠𝑡, 𝑎𝑡) , 

represents the probability that the environment will change to the state 𝑠𝑡+1 

at the next time step after the agent makes an action 𝑎 according to the cur-

rent state 𝑠𝑡; 

e) a reward 𝑟: 𝒮 ×𝒜 → ℝ, that is, after the agent makes an action according to 

the current state 𝑠𝑡, the environment will give an immediate reward 𝑟𝑡 to the 

agent, and this reward is related to the next state 𝑠𝑡+1 after the action 𝑎𝑡. 
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The agent’s decision in terms of which action 𝑎𝑡 is chosen at a certain state 𝑠𝑡 is 

driven by a policy 𝜋(𝑠𝑡) = 𝑎𝑡. The agent deploys its policy to interact with the MDP 

and emit a trajectory of states, actions and rewards: 

𝜏 = 𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, 𝑠2, … , 𝑠𝑇−1, 𝑎𝑇−1, 𝑟𝑇 , 𝑠𝑇 over 𝒮 ×𝒜 ×ℝ. The agent starts from the 

perceived initial environment 𝑠0, then decides to take a corresponding action 𝑎1, the 

environment feeds back to the agent an instant reward 𝑟1 and changes accordingly to 

the new state 𝑠1, and then the agent makes one action 𝑎1 according to state 𝑠1, re-

ward 𝑟2 is rewarded and the environment is changed to 𝑠2 accordingly. This interac-

tion can continue until the end of the episode 𝑇. 

Previous works employing RL in electricity market modelling have employed con-

ventional Q-learning algorithms and its variants [38]. Authors in [39], [40], [41], [42], 

[43], [44], [45] and [46] have successfully applied Q-learning method to the strategic 

bidding problem of electricity producers in a deregulated electricity market. In terms of 

retailer /aggregator, previous works [47], [48], [49] and [50] employ Q-learning to the 

strategic retail pricing problems with the objective of maximizing the selling revenues. 

Finally, a vast number of papers put efforts to the consumer/prosumer sides, includ-

ing demand response problems [51], [52], [53] and EV smart charging strategies [54], 

[55]. This type of algorithms relies on look-up tables to approximate the action-value 

function for each possible state-action pair and thus requires discretization of both 

state and action spaces. Therefore, it suffers severely from the curse of dimensionali-

ty; as the number of considered discrete states and actions increases, the computa-

tional burden grows exponentially, soon rendering the problem intractable. If on the 

other hand a small number of discrete states and actions are considered, the feed-

back the agents receive regarding the impact of their actions on the environment is 

distorted and the feasible action space is adversely affected, leading to sub-optimal 

bidding decisions. This challenge is aggravated in the setting of the examined market 

modelling problem, since both states of the environment (market clearing prices and 

dispatches) and agents’ actions (strategic bidding decisions) are not only continuous, 

but also multi-dimensional (due to the multi-period nature of the problem). 

In the context of addressing such dimensionality challenges, deep reinforcement 

learning (DRL) [38] which combines RL with deep learning principles and is driven by 

the universal function approximation properties of deep neural networks (DNN), has 

been a growing interest in a new promising research area. As an extension of Q-

learning on multi-dimensional continuous state space, authors in [56] proposed the 

deep Q-network (DQN) method which employs a DNN to approximate the action-

value function and has performed at the level of expert humans in playing Atari 2600 

games. Inspired by this pioneering work, several recent papers have employed the 

DQN method to various electricity market applications such as strategic bidding prob-

lem of electricity producers [57], smart pricing determinations [58], and demand re-

sponse problem of consumers [59] - [60] and EVs [61]. However, although previous 

work has demonstrated high quality performance of the DQN method in problems 

with continuous state spaces, its performance in problems with continuous action 

spaces is less satisfactory because the employed DNN is trained to produce discrete 

action-value estimates rather than continuous actions, which significantly hinders its 
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effectiveness in addressing the examined market modelling problem, since market 

players’ actions are continuous and multi-dimensional. In order to address the curse 

dimensionality of DQN method in discrete action space, deep deterministic policy 

gradient (DDPG) method [62] featuring an actor-critic architecture, which is able to 

handle the high-dimensional continuous state and action spaces. The existing litera-

ture has successfully applied DDPG method to the strategic bidding problem of elec-

tricity producer in a non-convex unit commitment (UC) problem [12], strategic pricing 

problem of an EV aggregator considering EV discrete charging levels [20], and the 

real-time home energy management problem [63]. 

 

 Multi-agent reinforcement learning 

If there are multiple agents in the electricity market, the Partially Observable Markov 

Game, an extension of Markov Decision Process (MDP) under a multi-agent setting, 

is normally considered as a concept. The electricity market problem includes 𝐼 agents 

indexed by 𝑖 ∈ ℐ = {1,2,… , 𝐼} with a set of environment state 𝒮 representing the global 

state; a collection of agents’ action sets 𝒜 = {𝒜1, … ,𝒜𝐼}, and a collection of private 

observations 𝒪 = {𝒪1, … , 𝒪𝐼}. Each agent 𝑖 employs a policy conditioned on its own 

private observation 𝜋𝑖(𝑎1|𝑜1): 𝒪𝑖 ×𝒜𝑖 → [0,1] to choose actions executed to the envi-

ronment and transit to the next state based on the transition function 𝒯: 𝒮 ×𝒜1 ×…×

𝒜𝐼 → 𝒮. At each time step 𝑡, all agents 𝑖 ∈ ℐ simultaneously take actions 𝑎𝑖,𝑡 accord-

ing to their individual observation 𝑜𝑖,𝑡 , then each obtains the immediate reward 

𝑟𝑖,𝑡: 𝒮 × 𝒜𝑖 → ℝ as well as a new private observation 𝑜𝑖,𝑡+1. The objective of each 

agent 𝑖 is learning a policy that can maximize its own total expected return over the 

game. 

Prior applications of MARL approaches in the area of power systems are still lim-

ited but emerging. The independent learning approach aims at training a policy for 

each agent by mapping its private observations to an action, and has been adopted 

for producers’ bidding problem [64], demand response problem of consumers [65], 

and peer-to-peer (P2P) energy trading problem [66]. However, training independent 

policies does not generally scale well to large numbers of agents and the change in 

the policies makes the environment dynamics non-stationary in the view of any indi-

vidual agent and may lead to instability.  

To overcome the non-stationarity issue, the multi-agent deep deterministic policy 

gradient (MADDPG) method has been employed by various researchers to address 

the optimal demand response problem in a smart city context [67] and energy man-

agement problem for manufacturing systems [68]. The advantage of this method lies 

in the employment of a central critic network which takes the observations and ac-

tions of all agents as the input for eliminating the environmental non-stationarity. Fur-

thermore, authors in [21] propose a parameter sharing (PS) method, an extension of 

MADDPG, to optimize the P2P energy trading problem among a large number of 

prosumers. 

If the agents are homogeneous and exhibit similar learning behaviours, their poli-

cies may be trained more efficiently using PS. Under this approach, all agents are al-

lowed to share the parameters of a single policy, which enables the policy to be 
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trained with the experiences of all agents simultaneously and the learned policy be-

comes a generalized strategy for agents. In addition, each agent can benefit from 

other agents’ episodic experience and learned knowledge. This substantially acceler-

ates the learning speed and reduces the computational burden of the algorithm. 

However, in the large-scale multi-agent systems, training of the centralized critics is 

intractable since the joint action and state spaces grow exponentially with the number 

of agents, a common bottleneck for both MADDPG and PS approaches. Furthermore, 

the assumption of agents’ homogeneity in terms of their energy characteristics fails to 

capture the natural diversity of agents with respect to their economic and environmen-

tal perspectives. 
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3. Modelling improving directions 

Beyond any model coupling and information exchange between models that is to take 

place in the context of TradeRES project, the four ABMs, namely AMIRIS, EMLab, MAS-

CEM and RESTrade, are also enhanced to incorporate further options and enable more 

extensive evaluation of market designs. Subject to improvements are also the optimization 

models used in the project, Backbone and COMPETES, with the relevant work taking 

place in WP2 and the details foreseen to be reported in D2.2. 

Three main pillars of improvement are about including flexibility options into the models 

from the temporal, sectoral and special point of view and for those special attention is 

paid, with the analysis and the implementations taking place in the relevant subtasks of 

WP4 and being presented in the corresponding deliverables, namely D4.1, D4.2 and 

D4.3. These aspects are also combined and supported by market functionality implemen-

tations that will enable the simulation and assessment of proposition of D3.5. The other 

improving aspect is that of the agent modules, which should get harmonised with all other 

modelling interventions and being enhanced towards directions that emerge from the syn-

thesis of work conducted in D3.2 and follow the two dimensions identified there, the oper-

ational and the behavioural one, respectively. 

Based on D3.2, there have been eight classes of actors that have been identified as 

playing a key role in electricity markets. These are the prosumer, the producer, the suppli-

er, the aggregator, the trader, the ESCo, the operator and the regulator, with a summary 

of the adopted definitions, the technologies with which an interrelation exists, the opera-

tional and the behavioural characteristics being provided in a per actor basis by the Actor-

ID cards of Section 5 of D3.2. Another critical part of the qualitative analysis of actors that 

took place in T3.2 have been the relational tables that were also reported in D3.2. Follow-

ing a table-based survey that was circulated among the TradeRES project consortium, the 

intensity of relations the suggested actors have with a wide range of technologies, many 

operational attributes and several behavioural aspects were identified. The three so-called 

relational tables of D3.2, using a heatmap visualization approach, presented through the 

intensity the importance the relations play in modelling, since they were perceived solely 

from the perspective of project needs, while further elaboration and details are provided in 

the corresponding deliverable. 

For the identification of the direction of improvements, given the relational tables of 

D3.2, an extra layer of information is added on top of each table for indicating either the 

coverage by initial versions of the models or the need for consideration for future inclusion 

(Figure 5). This per ABM indication, although it adds some extra complexity in the already 

informational-rich relational tables, constitutes a systematic and compact representation 

that supports (i) the identification of enhancing directions towards which the modelling 

efforts should focus, (ii) the provision of an actor-related coverage overview that facilitates 

the coordination of intervention priorities and (iii) the monitoring of the extent the im-

provements fulfil the identified needs. The concept of developing enhanced relational ta-

bles that include the extra layer of information about the ABMs’ coverage is presented in 

the schematic of Figure 5 and aims to make the mapping of actors and agents, by linking 

D3.2 with the current deliverable. 
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Figure 5: Development of enhanced relational tables with extra layer of information. 

Following the order of D3.2, the first enhanced relational table is the one that links actor 

classes with the technologies. On the one hand, technologies act as enablers and as they 

go through the lifecycle stages, they drive the emergence of new actors and roles, while 

on the other hand, directly influence the operation of assets as they set boundaries due to 

technical limitation and dictate the interaction of components. Table 1 includes the eight 

actor classes along with their type and various technologies given previous project devel-

opments. By considering equivalent agent classes, the extra layer of information that con-

sists of a set of coloured letters positioned in each corresponding cell, represents (i) the 

relations that are present in the initial versions of the models, (ii) the relations that indicate 

directions of new developments and (iii) the relations that although are already present 

are to be extended or improved. Those three cases are indicated by the colour of the let-

ters, while “A” stands for AMIRIS, “E” for EMLab, “M” for MASCEM and “R” for RESTrade. 

Considering in more detail Table 1, regarding the prosumers there has been some 

coverage of inflexible demand and distributed generation by certain models, with potential 

of improvements, while the incorporation of DR, EVs and ESS is foreseen by the majority 

of the models with operational orientation. Producers, who are considered being either 

large or distributed and represent either generation or storage, are and will be further rep-

resented in models. EMLab, the long-term investment ABM that participates includes a 

wide range of technologies found in large scale power generation and storage, while the 

slight enhancement of certain existing ones is expected. On the other hand, operational 

ABMs concentrate their interest in flexible technologies (EVs, ESS) and renewable gener-

ation technologies with distributed versions by introducing new components into their 

models. Certain technologies are also to be related to suppliers, aggregators, and traders 

as after their introduction at the distributed level through the prosumers and producers, 

the concentration for participation/expression in markets is required. Moreover, relations 

of operators and the regulator with several technologies that exist through the anticipation 

of technical parameters in operations are present and enhanced in some cases. Overall, 

by observing Table 1 it can be said that there the overall coverage of the identified rela-

tions is extensive, with only some minor ones not being covered by a model.  
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Table 1: Relational table between actors and technologies with ABM coverage. 
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3.1 Operational Dimension 

The operational dimension as considered in the technoeconomic analysis framework of 

D3.2 aimed to focus on the technical side of the relation of actors to either a single or a 

set of technologies that either set the nature of their role by providing the main character-

istics or impose operational constraints. Several operational attributes, such as the flexible 

and inflexible demand, the controllable and non-controllable generation, the storage and 

the EVs, and the networks, were considered for the various groups of technologies taken 

into account in TradeRES project and mentioned earlier. An in-detail presentation of the 

most common parameters involved is provided in D3.2. 

As far as the modelling initial and future status of those relations is concerned, Table 2 

gives an overview. By observing the table, it can be said that many modelling interven-

tions are expected, which will lead to almost all identified operational aspects to be incor-

porated in the final versions. Detailed presentation of operational aspects in the initial 

model versions, which constitute the starting point of the model enhancement process, 

are provided in Section 4.1. Moreover, elaboration on the modelling priorities identified for 

the enhancement of each model, along with presentation of the implementation plans, are 

provided in Section 4.2. 

The operational dispatch models focus particularly on the improved representation of 

prosumers as it can be seen in Table 2, where although the initial concern has been lim-

ited in the inflexible demand part and especially in the profiles, the plan is the considera-

tion of load shedding options, flexible demand, and storage asset capabilities. AMIRIS has 

the ability to simulate generic prosumers with an inflexible demand, through the cost min-

imising dispatch. RESTrade considers aggregated prosumers in the context of balancing 

markets, where they can provide energy balance to the power system. MASCEM as-

sumes they are able to buy or sell in the market, at the defined price and according to 

their goals. As far as the investment simulation model EMLab is concerned, it used a 

segmented load and it is being adapted so that it uses the market clearing, including the 

demand representation, of AMIRIS  

Large generation has been found to be affected by the capacity and the power limits, 

while the generation profile seems to be among the important aspects for the case of non-

controllable units. Many of those, along with all other generation attributes are considered 

in several ABMs. The main agents included in EMLab are the electricity generation com-

panies that possess a portfolio of generators. The producer agents sell electricity, pur-

chase fuels based on their expected fuel prices, and acquire CO2 emission rights, apart 

from making investment or disinvestment decisions. On the operational dispatch models, 

large as well as distributed producers are aggregated as for example in AMIRIS, including 

conventional and renewable electricity generation as well as the operation of flexibility 

options. RESTrade’s producer agents are operators of a set of power plants of various 

technologies and where suitable are enabled to assess their optimal market strategic par-

ticipation between spot and balancing markets, considering a profit maximization, and 

taking into account technical and economical characteristics of the underlying technolo-

gies. In MASCEM, the producer agent is connected with the aggregator, the wholesale 
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market and the local/community market agents, while its objective is to sell in the market, 

with its bids being set according to its goals/generation costs. Similarly for storage, either 

large or distributed, attributes like the energy limit, the charging/discharging limit and 

charging/discharging efficiency appear to matter and getting incorporated in AMIRIS mod-

el. 

The supplier and aggregator classes that are next in order in Table 2, are also among 

the classes of actors that are interrelated to demand response attributes and generation 

as well as storage characteristics. In terms of modelling, related agents inherit operational 

properties by the entities they aggregate. Therefore, operational dispatch models such as 

RESTrade and MASCEM pay much attention in the integration of those aspects. On RE-

STrade suppliers, the goal of which is to maximize their return, can negotiate bilateral 

agreements with end-use consumers obtaining a private portfolio to manage. At the same 

time, on the production side, wind power plants are aggregated with ultimate goal of their 

unified representation to the market: increase the value of products/services offered. In 

MASCEM aggregator’s agent objective is close to the prosumer’s one, as it aims to serve 

its goals by managing resources of its portfolio and participating in the market. In AMIRIS, 

aggregators are a subclass of traders but as they optimize supply and demand of an en-

ergy community the relative operational relations have been accounted in energy commu-

nities of prosumers. Optimisation of demand response for industrial consumers through 

load shedding and load shifting as well as consideration of flexible heating with heating 

storage for households are foreseen for consideration in AMIRS, with the attributes ac-

counted in the relevant prosumer types. 

Finally, the TSO and the DSO have been related to network operational attributes since 

their operations are affected by the topology of the networks, the line characteristics and 

the technical limits. In RESTrade, where the TSO agent is responsible for managing the 

balancing markets and the cross-border exchange, beyond being equipped with the cor-

responding market mechanisms of the balancing markets, considers the line characteris-

tics in the either constant seasonal or dynamic line rating (DyLR) approaches deployed. 

The validation of the transmission or distribution network operations is the objective of the 

TSO and DSO agent in MASCEM, respectively, while power flows are considered with 

several operational attributes being under consideration. 
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Table 2: Relational table between actors and operational attributes with ABM coverage. 
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3.2 Behavioural dimension 

Regarding the behavioural dimension, characteristics that influence and govern the be-

haviour of actors have been highlighted in D3.2. Several behavioural aspects have been 

considered in the qualitative part of the analysis, which have been grouped into four cate-

gories. These are the self-interest drivers, the non-self-interest drivers, the influencing 

standards and the other characteristics that are common in behavioural economics. 

The self-interest drivers, which conceptualize the most common goals of actors, are the 

utility maximization, the cost minimization, the profit maximization and the return on in-

vestments. These follow the assumptions of classical economics for modelling of con-

sumers, social planners, producers and investors, respectively and capture the main be-

havioural driver of actors when they interact and participate in the markets. Table 3 offers 

a full overview of the coverage offered by each ABM on the identified relations from be-

havioural point of view, considering the initial versions of the models as well as the inter-

vention directions that have been prioritised. 

On the generation side, profit maximizing rules are used in AMIRIS for conventional 

power plants, while renewable units use mechanics for market participation that depend 

on the assumed support instruments. Traders have a central role as they contract produc-

ers and determine the bidding strategies, and hence, they constitute an important compo-

nent as far as decision making is concerned. Selection of the most suitable among the 

support instruments, choice of the most appropriate marketplace and finally determination 

of bidding strategies are the decisions that the class of traders is expected to undertake. 

Several strategy variations can be implemented, with indicative example for the storage 

trader case being the minimization of system’s cost or the maximization of own profits with 

or without using market power. 

In RESTrade, prosumer agents are equipped with utility and optimization functions and 

consequently are able to respond to dynamic price signals, adapting their consumption 

patterns following the notion of elasticity of demand. Producers on the other side are able 

to assess their optimal participation between markets given their profit maximization goal. 

Suppliers and aggregators operate with the maximization of their returns as their main 

driver and of the overall revenue streams of the aggregated wind plants in the case of 

VPPs, with their allocation being subject to the adopted business model. 

Environmental, social and sustainability concerns as well as internalization of legisla-

tion standards are applicable to almost all actors and will be considered in an appropriate 

way in MASCEM. In addition, cost minimization, utility maximization and profit maximiza-

tion behaviours are to be related to prosumers, producers, suppliers, aggregator, whole-

sale trader, ESCo and for the local/community market. Comfort have been also highlight-

ed, especially for prosumers and the aggregator, as well as safety standards for TSO, 

DSO and regulator, and, finally, attitude to risk, for prosumers, producers, suppliers and 

aggregator. 
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Table 3: Relational table between actors and behavioural aspects with ABM coverage. 
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4. Model capabilities and enhancements 

The previous section provided an overview of the coverage that participating ABMs 

offer through their initial versions and highlighted the main directions of enhancing the 

models towards a more complete, realistic, and contemporary representation of actors in 

market simulation tools. This analysis began by considering the relations of actor classes 

with the operational attributes and the behavioural characteristics that have been identi-

fied earlier in the project and continued by bringing the agents’ implementation into that 

canvas. In this section, the ABMs participating in TradeRES project are reviewed in detail 

with respect to their agent representations, while the implemented enhancements are fur-

ther described as well. 

4.1 Initial agents and modelling principles 

The presentation of the agents in the initial versions of the models is performed in al-

phabetical order, considering the four participating ABMs. It is worth mentioning that not 

all of the models represent all the classes of actors through their agents, as according to 

the special objective of each model the attention is paid to certain segments of the actor 

scene, or the perspective is more micro- or macro- founded. 

4.1.1. AMIRIS 

The agent-based simulation model AMIRIS offers an innovative approach for the anal-

ysis and evaluation of energy policy instruments and mechanisms for the integration of 

renewable energies into the electricity markets. One of the main focusses of AMIRIS is to 

model the energy market actors’ micro-economic behaviour under imperfect foresight and 

information asymmetries. AMIRIS represents energy system actors by prototypical agents 

which are assumed to behave economically rational under given but possibly incomplete 

information. Due to this approach most of the agents seek to maximise their profit using, 

e.g., rule-based strategies. These might not always result in the best possible solution but 

contain model calculation efforts. 

In general, the number of agents is not defined in AMIRIS and can be scaled up arbi-

trarily. Thus, it would be technically possible to simulate every individual participant of the 

energy system. However, the level of (dis-)aggregation should be adjusted to the research 

question and available data – to retain a parsimonious and computationally feasible mod-

el. More details about the models can also be found in D4.1, while in the paragraphs that 

follow some key remarks about the actor classes in the initial model version are provided. 

 Prosumers: 

National power demand is modelled as an aggregated block. Regarding the spe-

cial case of energy communities, AMIRIS can simulate the cost minimising dis-

patch of generic prosumers with an inflexible demand (see item 4, “Aggregators”). 

Those prosumers are depicted as agents without potential for demand response. 

 Producers: 

Large as well as distributed producers are aggregated for AMIRIS simulations by 
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their generation technologies. They cover conventional and renewable electricity 

generation as well as the operation of flexibility options. 

For conventional generation typically one fleet of power plants per energy carrier 

and technology type is used. Parameters for this fleet are fuel type, minimum and 

maximum efficiency, total installed power, power per plant, etc. Conventional gen-

eration is marketed by offering power at marginal cost for each power plant.  

Renewable generation can be split into power segments. These segments can 

consider any criterion for distinction (e.g., power limits, remuneration precondi-

tions, location, etc.). One segment per technology is considered in the default con-

figuration. Time series for the yield potential are used to determine the feed-in of 

fluctuating renewable units. Marketing of renewable units is offered via a fixed 

market premium. 

Storage units are modelled using aggregated and generic power-to-X-to-power 

storage units. Technical specifications for these units include energy-to-power ra-

tio, charge & discharge power and efficiencies. Other parameters control the mar-

keting strategies and the numeric precision of dispatch scheduling. 

It must be mentioned that in AMIRIS producers are contracted to wholesale traders 

who determine the bidding strategies. Producers are only tasked to determine 

which power generation unit of their fleet to dispatch in order to fulfil any awarded 

bid, i.e., to deliver sold energy. Due to this separation of concerns, agents for plant 

operation and trading require a strong communication link within AMIRIS. 

 Suppliers: 

The class of suppliers is not yet directly considered in AMIRIS. However, the 

“community aggregator” agent integrates some functions of suppliers. It is manag-

ing the electricity load and feed-in of the local grid with households as inflexible 

prosumers and an energy community storage (see item 4, “Aggregators”). 

 Aggregators: 

Aggregators are represented as a subclass of traders in AMIRIS. They optimize 

supply and demand of an energy community. The aggregator in an energy com-

munity manages electricity load and feed-in of the local grid. In the current imple-

mentation, households as inflexible prosumers and a community energy storage 

(CES) are assigned to a retailer, serving as the energy community aggregator. The 

retailer can apply strategies like maximisation of its profit and maximisation of the 

energy community’s autarky to the operation of the CES. 

 Traders: 

Previous work in the model development of AMIRIS has focused on direct market-

ing of renewable electricity in Germany. Therefore, existing central actors in the 

model are differently prototyped trading agents. These contract suppliers, either 

electricity generators or flexibility option operators and sell their generated electrici-

ty to the electricity markets. The electricity demand is also modelled by trading 

agents which request energy from the market to satisfy electric load and charging 

of storages. 
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Accordingly, the class of traders covers the widest scope of decision making in 

AMIRIS. They choose available support instruments, marketplaces and bidding 

strategies. Depending on the actual trading agent, often several strategy variations 

are implemented. For the storage trader, e.g., strategies to minimise system cost, 

to maximise own profits with or without using market power are available. In addi-

tion, traders may decide upon including individual markups and markdowns for 

conventional and renewable generation units. 

Price forecast errors are artificially created at the central forecasting agent. How-

ever, the trader agents can control the level of error they have to deal with – similar 

to a real-world situation where traders may improve their forecast quality, e.g., by 

combining multiple different forecasts. 

Typically, one wholesale trader is assigned to market the volume for one conven-

tional power plant fleet, although less or more coarse assignments can be made. 

The same applies for marketing of renewable electricity generation technologies. 

However, by default the trading agents are distinct with respect to the support in-

strument they offer to the associated power plants. 

 ESCos: 

The class of ESCos is not implemented in AMIRIS. 

 Operators: 

AMIRIS provides several classes of operators: The agent representing the whole-

sale market operator clears the market, determines the wholesale power price and 

disburses the market revenue to the corresponding agents according to their 

awarded bids and asks. For the calculation of the market clearing price a merit or-

der model is implemented. 

 Regulators: 

AMIRIS features a regulator class to host support instruments and provide remu-

neration to market participants. A second agent is planned to collect dues from the 

market participants. These agent types, however, do not feature active decision 

making but rather provide pre-configured policy instruments to other agents. 

4.1.2. EMLab 

The purpose of modelling generation investment with an agent-based approach is to 

simulate imperfect behaviour of investors due to limited information. In comparison to op-

timization models, in ABMs producers might over- or under invest, as it occurs. In EMLab, 

agents are programmed as objects. The agents’ decisions change their own portfolio but 

also affect the surrounding. An overview of the agents can be found in Table 4. 

The main agents are the electricity generation companies “EnergyProducer” that pos-

sess a portfolio of generators. In the basic implementation of EMLab, the “EnergyProduc-

er” agents are modelled as risk neutral, meaning they are economically rational.  In its 

current version, EMLab does not consider investors potential strategic behaviour, nor 

market power dynamics. 
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To make an investment decision, each simulation year, the agents make a forecast of 

a future electricity market. Taking past data (4 to 6 years) of the demand, fuel prices and 

CO2 prices, these variables are projected to a future reference year. In each iteration a 

randomly selected agent simulates the cash flow of a new plant with the projection of fu-

ture prices. The projected plants are expected to run if their variable costs are below the 

expected electricity prices. Their cash flow is calculated considering the revenues from the 

future electricity prices (which consider the forecasted fuel prices), the running hours and 

the costs of the projected plant. For the net present value (NPV) calculations, the con-

struction time and the expected lifetime of the plant are considered. This iteration is done 

for all new possible technologies. The agent in turn selects the technology with the highest 

NPV and if it has a sufficient cash flow for the down payment, then it invests. The equity 

costs are considered immediately, and the debt costs are considered during the deprecia-

tion time on future cash flows. This procedure is repeated for the next agent which pro-

jects the future system considering the plant that the previous agent decided to invest in. 

The iteration continues until the agents stop being willing to invest because the projected 

cash flows are negative (negative NPV) or because their cash flow is insufficient to fi-

nance the equity. The agents make disinvestment decisions by considering the age or the 

profitability of the power plants. If the cash flow of a plant is negative for several years 

(user-defined) and it is also forecasted to have a negative cash flow, then the plant is dis-

mantled. A more detailed description of the model can be found in [69]. 

The variability of renewable energies is taken into account considering the ratio of 

their capacity to be available during the different load duration segments. To simulate the 

renewable energy support, a renewable target investor agent “TargetInvestor” is imple-

mented. If the investment in renewable generation is below the policy target, then this 

agent covers the difference between the target and the invested capacity. The investment 

is made even if the technologies are not profitable, resembling the subsidies that these 

technologies receive. 

Apart from investment the “EnergyProducer” agents sell electricity, purchase fuels 

based on their expected fuel prices, and acquire CO2 emission rights. The demand is rep-

resented by a single “EnergyConsumer” agent.  

An agent called “Government” defines the rules for the CO2 market (CO2 caps, CO2 

penalty, CO2 price trend, etc) and the market stability reserve. Similarly, there are other 

agents that define the rules of mechanisms, such as the Strategic reserve operator. The 

rest of the agents (PowerPlantManufacturer, PowerPlantMaintainer, BigBank, Commod-

itySupplier, ElectricitySpotMarket, CommodityMarkets) have simple functions and are 

unique agents that do not present group interactions nor emergent behaviour. 
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Table 4: Agents in EMLab Generation [69]. 

Agent Names Complexity Class 

EnergyProducer High  domain.agent.EnergyProducer 

TargetInvestor Simple Rules domain.agent.TargetInvestor 

PowerPlantManufacturer Accounting  domain.agent.PowerPlantManufacturer 

PowerPlantMaintainer Accounting PowerPlantMaintainer 

BigBank Accounting domain.agent.BigBank 

CommoditySupplier  Accounting domain.agent.CommoditySupplier 

EnergyConsumer Accounting domain.agent.EnergyConsumer 

Government Simple Rules domain.agent.Government 

ElectricitySpotMarket High  domain.market.electricity.ElectricitySpotMarket 

CommodityMarkets  Simple Rules domain.market.electricity.CommodityMarket 

4.1.3. MASCEM 

MASCEM is also a simulation and modelling tool developed for studying and simulat-

ing electricity market operation. To achieve its design goals, MASCEM models the main 

market entities and their interactions, with players’ decisions being in accordance with 

their specific characteristics. The main market entities are implemented as software 

agents and in the current version of the model there are eight different classes of actors 

that can be classified as follows: 

 Prosumer: 

one agent with as many instances and parameters as needed by the case study. 

 Producer: 

One agent with as many instances and parameters as needed by the case study. 

 Supplier: 

One agent with as many instances and parameters as needed by the case study. 

 Aggregator: 

One agent with as many instances and parameters as needed by the case study. 

 TSO: 

One agent with one instance. 

 DSO: 

One agent with one instance. 
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 Wholesale market operator: 

Three agents, MIBEL (Iberian Electricity Market), EPEX (European Power Ex-

change) and Nord Pool (Nordic Power Exchange). 

 Local/Community market operator: 

One agent with one instance. 

In what concerns the model’s functionality, in the scope of TradeRES none of the ac-

tors is considered to undertake autonomous decisions. These agents perform specific 

tasks in the market environment, with their actions being specified a-priori. For example, 

the prosumer, producer, supplier, and the aggregator need to define the price, volume, 

and any specifications to be submitted in the market for each negotiation period. 

Furthermore, when considering the objective function or the agent’s objective in this 

model: 

 For the TSO and DSO, the objective is to validate the network, either at a trans-

mission or distribution network level, considering the market economic results; 

and communicate these validated results to the respective market operator, so 

that actions may be performed in case there are power flow problems; 

 For the wholesale market operator and the local/community market operator 

agents, the objective is to run the market itself, calculating the market social wel-

fare, finding the market price and defining accepted/refused bids from all market 

players for each market negotiation period; 

 For the prosumer, the goal is to buy or sell in the market, at the defined price ac-

cording to its goals; 

 The objective of the producer is to sell in the market, at the defined price accord-

ing to its goals/generation costs; 

 Finally, the aggregator’s objective is close to the prosumer’s one, it is to buy or 

sell in the market, at the defined price according to its objectives and the re-

sources being managed by it. 

Table 5 illustrates the existing direct connections between the different actors. It is im-

portant to notice that the aggregator is the only entity that interacts with all other actors, 

being able to manage consumers, generators, and prosumers, participating in wholesale 

and local markets, and potentially enrolling in power network validation roles as well. The 

DSO and TSO interact (besides the aggregator) with the local market and wholesale mar-

ket operators, respectively, for power network validation purposes, at the different levels. 

Prosumers, producers, and suppliers are able to participate in the market directly, and 

also indirectly, via an aggregator. 
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Table 5: Direct connections between actors. 
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Prosumer - - - x - - x x 

Producer - - - x - - x x 

Supplier - - - x - - x x 

Aggregator x x x - x x x x 

TSO - - - x - - x - 

DSO - - - x - - - x 

Wholesale Market x x x x x x - x 

Local/Community Market x x x x - x x - 

Based on the current stage of the model and the purpose and characteristics of the 

project, some enhancements regarding the actors’ capabilities were planned and devel-

oped as described in Section 4.2.3. 

4.1.4. RESTrade 

RESTrade – LNEG’s open-access model - is supported by the Multi Agent Trading in 

Electricity Markets (MATREM) system that has been developed at LNEG [70] in recent 

years. MATREM is capable of simulating long-term futures, bilateral and contracts for dif-

ferences (CfDS) but also short-term day-ahead, intraday, and balancing markets (BMs). It 

is equipped with traditional models of consumers, suppliers, and producers' agents, but 

also of the Power Exchange (PX) that is equipped with the markets algorithms of the 

aforementioned markets, with exception of BMs that are managed by the Transmission 

System Operator (TSO). Although MATREM is available for use within TradeRES project, 

it is not an open-access system. 

RESTrade is an ABM model that includes the agents and features below. 

 Consumers: 

RESTrade is capable of representing traditional consumers. On MATREM these 

agents are only able to operate in retail markets and negotiate bilateral contracts 

with suppliers [71]. While negotiating bilateral contracts they are also able to nego-

tiate a direct load control mechanism with suppliers, that consists of a demand-
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response (DR) program [72]. On RESTrade they are equipped with utility and op-

timization functions that enable them to respond to time-of-use (ToU) rates, chang-

ing their consumption behavior according to their elasticity, considering shifting or 

curtailing demand, i.e., demand-side management (DSM) Their optimization func-

tions have the goal of minimizing costs according to ToU rates and their flexible 

demand. MATREM also supports coalitions of consumers [73]. For the time being 

RESTrade does not models prosumers. 

 Producers: 

MATREM’s producer agents can be operators of a power plant or a set of power 

plants of the following technologies: a) fuel oil, b) carbon, c) natural gas CCGT, d) 

nuclear, e) hydro, and f) vRES. Producers with traditional technologies are 

equipped with the technical and economical characteristics of these technologies 

enabling them to assess their optimal market strategic participation between spot 

and bilateral markets considering a profit maximization function [74], [75], [76]. The 

producers receive the prices of current bilateral contracts and expected prices of 

future bilateral and spot markets. Furthermore, they also receive their vRES plants 

production to plan their market participation and dispatch. These agents set 

agreements/make a bid for each power plant considering (only) its marginal cost, 

except for hydroelectric power plants. For hydro plants, that are also equipped with 

a water value function, the agent enables producers to compute and maximize 

each time step's economic value between selling energy and the expected value of 

stored water [77]. The power plants that can participate in balancing markets are 

pre-defined according to their technical characteristics and they are obliged to do. 

All producers can also negotiate bilateral agreements with suppliers or send bids 

to the balancing markets managed by the TSO [78]. 

 Suppliers: 

A supplier agent can participate both in wholesale and retail markets. On 

MATREM suppliers can negotiate bilateral agreements with end-use consumers 

obtaining a private portfolio to manage. Their goal consists in maximizing their re-

turn. Considering a target return, they propose tariffs to end-use consumers based 

on expected spot prices [79]. Then, they buy energy from spot markets to satisfy 

their portfolios. While negotiating different tariffs with consumers, suppliers incen-

tivize DSM and can also negotiate and contract DR programs with them [80]. 

 Aggregators: 

Currently, RESTrade only has aggregators of wind power plants. These aggrega-

tors have the goal of increasing the wind power value to the market, by improving 

the forecast accuracy, when the combined power output of these power plants is 

used [81]. This aggregation is spatially limited to a control region within the power 

system. They only negotiate at spot markets [82]. 

 TSO: 

Under the TradeRES project, the TSO agent of RESTrade will only be responsible 
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for managing the balancing markets and the cross-border exchange using con-

stant seasonal line rating (SLR) or dynamic line rating (DyLR) approaches [83]. It 

is equipped with the market mechanisms of the balancing markets [84]. This agent 

is responsible for the aFRR capacity procurement, using the ENTSO-E and the 

Portuguese formulations [85]. It is also responsible for clearing the aFRR capacity 

and energy, and mFRR energy market based on the marginal pricing or the pay-

as-bid approaches. It also can detect cross-border congestion when using SLR. 

For this situation, a DyLR approach is applied to (potentially) obtain an extra ca-

pacity, thus avoiding those grid congestions whenever feasible [83].The TSO is al-

so responsible for the Imbalance Settlements of the Balance Responsible Parties 

imbalances. It computes the imbalance prices using the single price Portuguese 

rule or the double pricing Nordpool or Spanish rules. 

Under this project, the TSOs functions of MASCEM (developed by ISEP) and RE-

STrade are being coupled using the Spine Toolbox and will be applied to MIBEL’s 

case study. On Spine Toolbox, the TSO agent already has the market algorithms 

of the day-ahead and balancing markets.  

Table 6 illustrates the main characteristics of these agents. 

Table 6: RESTrade’s agents characteristics. 

Class of Actor Number of Agent(s) Functions Interacts with 

Consumer >10 aggregated 

Minimize costs, maxim-

ize utility. Respond to 

DSM and DR programs 

Suppliers 

Producer 
>10 with multiple power 

plants 

Maximize profit or utility. 

Bids based on optimal 

operation and marginal 

costs. 

Suppliers and TSO 

Supplier 
~6 representatives of 

the Iberian market 

Maximize return or utili-

ty. Incentivize DSM and 

DR programs. 

Consumers, Producers 

and TSO 

Aggregator 

>10 considering the 

number of control 

zones 

Minimize deviations and 

maximize profit. 
TSO 

TSO 1 

Manage the balancing 

markets and cross-

border congestion. 

Producers, Suppliers 

and Aggregators 

 

Based on the current stage of the model and the purpose and characteristics of the pro-

ject, some enhancements regarding the actors’ capabilities were planned and developed 

as described in Section 4.2.4. 
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4.2 New agents and agent enhancements 

Enhancements as well as the introduction of new agents are presented in this subsec-

tion, in a model-by-model way, following the same sequential order as before. Several 

implementation plans are described here, while there are many links to other deliverables, 

e.g., D4.1, D4.2 and D4.3, that include details on flexibility options modelling. 

4.2.1. AMIRIS 

New agents, policy measures, strategies, and evaluation options were implemented in 

AMIRIS in the course of TradeRES. These enhancements are described in the following. 

In light of recent and radical developments in the energy sector further enhancements are 

deemed necessary for AMIRIS. This especially includes the connection to the hydrogen 

sector. Therefore, it is planned to also model agents for the operation of hydrogen-fuelled 

power plants and electrolysers. Please refer also to the deliverables D4.1, D4.2 and D4.5 

for a more complete picture of TradeRES-related enhancements of AMIRIS. 

 Prosumers: 

The representation of demand side flexibility has been developed within the ag-

gregators’ strategies (see item 4, “Aggregators”). 

 Producers: 

The producer agents’ reporting capabilities were significantly enhanced to allow for 

more complex simulation result assessment. This includes tracking of consumed 

fuels and emitted CO2, as well as tacking of income and expenses. As mentioned 

above, it is planned to implement hydrogen-fuelled thermal power plants. 

 Suppliers: 

According to plan, supplier agents were not enhanced beyond their existing im-

plementation. 

Aggregators: 

A new class of aggregators in AMIRIS is optimising demand response for industrial 

consumers. Demand response can be operated in two ways: Load shedding and 

load shifting. To depict load shedding, the overall demand is sliced into segments. 

There is one agent marketing all the demand segments at their attributed value of 

lost load. The number of segments can be adapted as required. Load shifting is 

implemented using a dynamic programming approach with a newly developed two-

dimensional state definition comprising the time spent for load shifting and a corre-

sponding energy level. 

Multiple different real-time pricing options for load-shifting were implemented in 

AMIRIS. Consumer price components (i.e., procurement, grid charges, levies, tax-

es) can be static or time-varying according to real-time market prices. In addition, 

grid charges can be determined based on annual peak capacity. The load shifting 

operation agent was enhanced to consider these different consumer pricing me-

chanics during its dispatch optimisation. This optimisation can be targeted at either 

minimising the total system cost or maximising the agent’s profits. 
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The optimisation of household heat pumps with heat reservoir capacities was im-

plemented in AMIRIS. Strategies for operating at a constant temperature or be-

tween a minimal and maximal temperature were integrated into AMIRIS. Three dif-

ferent thermal response models for the depicted households were created. Ongo-

ing tasks include the calibration of the thermal response models to the scenario 

data defined in WP2. 

Without a detailed understanding of individual charging behaviour, AMIRIS would 

not have provided additional insights regarding demand of electric vehicles and its 

potential for flexibility compared to the optimisation models within TradeRES. 

Thus, AMIRIS will derive the demand from electric vehicle charging from results of 

the optimisation models. 

 Traders: 

In AMIRIS the newly developed demand response aggregator agents (see item 4, 

“Aggregators”) are classified as trader agents. Thus, corresponding developments 

would fit here, too. Beyond that, no further trader-agent classes were developed 

but existing agents were enhanced significantly with regard to policy instruments 

(see item 8 “Regulators”). Previous, rather rigid implementations of policy instru-

ments and associated trading strategies were replaced to provide the necessary 

flexibility for policy assessments within TradeRES. Therefore, AMIRIS now sup-

ports smart trading strategies for various support policies. The trading agents for 

renewable energy in AMIRIS can now also manage multiple sets of different asso-

ciated plant operators with individual support policies. In this way, more complex 

portfolios can be simulated. 

In addition, all trading agents for renewables can now be parameterised with indi-

vidual power forecast error statistics. This allows to assess the impact of new mar-

ket products with shorter gate-closure lead times onto the profits of renewable 

agents. 

 ESCos: 

It is not intended to implement ESCos in AMIRIS, since energy efficiency and con-

tracting are out of scope. The demand level is taken from external time series. 

 Operators: 

The wholesale market operator in AMIRIS was found to be already compatible with 

different proposed wholesale market rules, including new products with shorter 

time units and rolling-horizon market clearing - please refer to Deliverable D4.1 for 

details. Also, other market operators, i.e., the fuels market operator and carbon 

market operator are compatible with these new products. Therefore, no changes 

were required for the market operators. 

Albeit not developed within the scope of the TradeRES project, AMIRIS was im-

proved with regard to market coupling during another project. This algorithm is ca-

pable of clearing multiple markets in parallel by minimising the total system cost of 

the linked markets considering provided transmission grid capacities. If required, 

this newly developed market coupling algorithm could be adapted for the needs of 
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the TradeRES project and thus be utilized for more complex assessments with 

AMIRIS, e.g., within the European case study in WP5. 

 Regulators: 

Several different support policies were implemented in AMIRIS in a highly flexible 

way, thus giving modellers maximum freedom of parameterisation. This includes 

the following support policies: “feed-in tariff” (FIT), “fixed market premium” (FMP), 

“variable market premium” (VMP), “contracts for differences” (CFD) and “capacity 

premium” (CP). Different parameterisations can be specified for different energy 

carriers or remuneration sets. This enables precise parameterisation of different 

sets of renewable plant operators, differentiated by, e.g., location, year of con-

struction, or capacity. 

FIT and FMP policies allow to specify a time series for the pay-out scheme. This 

enables the integration of multiple cohorts into a single remuneration set. For both 

policies, the pay-out is calculated according to the actual feed-in of the plant oper-

ator. Plant operators also receive the market revenues when using FMP in con-

trast to FIT. 

VMP and CFD are more dynamic policies. Their premia are calculated by taking 

the difference between the estimated levelized cost of electricity production 

(LCOE) and the average market revenues of that energy carrier. LCOE can be 

specified individually for each remuneration set and can vary over time. In case of 

CFD, operators need to pay-back market revenues exceeding their estimated 

LCOE. 

Finally, in case of CP policies, operators are rewarded based on their installed 

electricity production capacity. Again, the premium can be a time series. 

 

4.2.2. EMLab 

The current EMLab implementation uses a segmented load duration curve. This was 

originally designed to speed up the calculations. A major drawback is that this implemen-

tation doesn’t allow to model energy storage and demand side response. For this reason, 

the most suitable improvement is to couple EMLab with another model that has imple-

mented a more detailed dispatch model. It can be coupled with an optimization dispatch 

model that reflects the optimal dispatch decisions or another ABM, e.g., AMIRIS. The in-

vestment algorithm of EMLab requires iterating the dispatch algorithm several times. This 

would require stopping the calculations, extracting information, feeding it to the second 

model, using the results of the second model, and restarting the calculations. This would 

be very complex and require large code adjustments. For this reason, EMLab that was 

originally written in Java, was rewritten into smaller modules in Python. A second reason 

is that the soft linking is executed with a Python tool, Spinetoolbox, which would facilitate 

the integration. The new EMLab, written in Python is called EMLabpy. Coupling the EM-

LAB investment algorithm with the AMIRIS dispatch algorithm requires some adjustments 

to the logic of the investment iteration. It requires adding modules to enable the data ex-

traction and the data insertion into both models. The target investor logic will also be re-
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placed by the RES support results from AMIRIS. Furthermore, a short-term investment 

algorithm was added. This module represents those investments made in technologies 

that can be quickly installed, such as PV and batteries. Instead of basing the investment 

decisions on a forecast of the market, the agents invest in these technologies based on 

the market revenues from previous simulation years. The long-term investment module 

kept the myopic behaviour of the investors as described in section 4.1.2. Adding a more 

detailed short-term market can increase the computational time exponentially, for this rea-

son as a first approach only one energy producer agent is being considered. The agents 

with simple rules and accounting rules, as indicated in Table 4, have also been simplified. 

Apart from the model coupling, only minor additions to EMLab are anticipated. The most 

important enhancement is the addition of the capacity subscription mechanism. This addi-

tion requires enhancements to the consumer agents in the dispatch algorithm and it is 

described in Deliverable 4.5. 

4.2.3. MASCEM 

Considering the project goals and characteristics, new features were designed and 

implemented, including the enhancement of the considered actor characteristics and a set 

of actors’ behaviour capabilities. In what concerns the technology already implemented in 

the model, MASCEM considers inflexible demand and flexible heating and cooling (H&C) 

for prosumers and aggregator. It also considers the possibility of adding PV and wind 

generation. 

Considering the existing features, during this project demand-side response (details in 

D4.1, subsection 3.3.2) and electric vehicles management (details in D4.2, subsection 

3.2.2) models were designed and integrated into prosumer and the aggregator agents. In 

specific, a load curtailment model was designed for the inflexible demand and a load 

shedding and shifting model was developed for flexible loads (see D4.1, subsection 

3.3.2.1). Besides the cost factor, these models consider the relative importance of end-

user comfort and the effect of local produced generation and real-time pricing (see D4.1, 

subsection 3.3.2.2). The models are applied to the consumers and prosumers, taking ad-

vantage on the management role of the aggregator entity. The aggregator, besides man-

aging and suggesting load management actions to its aggregates, also applies new mod-

els developed for resources’ aggregation. The aggregation models (described in D4.3, 

subsection 3.2.2) allow the aggregator to identify the players that should be approached 

for the application of demand response actions and events, considering the characteristics 

of these players and their influence on the power network flow. In this way, the MASCEM 

market models can be executed at different levels, at different timings, and considering 

different modes of participation from the diverse actors. Currently, the MASCEM model 

enables running the wholesale market considering aggregator agents that represent a 

fixed set of consumers and generators as well as aggregators representing a restrictive 

set of consumers/prosumers, negotiating their flexibility in the market. On the other hand, 

while an aggregator can be a negotiating player (selling or buying) in the wholesale mar-

ket, it can also be at the same time a market operator in a local market executed at a zone 

managed by itself (including the necessary interactions with the local DSO). The MAS-

CEM model has the flexibility to define aggregators participating in the wholesale day-
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ahead market to buy/sell the forecasted demand/surplus of its clients and later (on the 

following day) adjust their clients' needs in both local electricity markets and flexibility 

markets. 

Other operations that were added to the prosumer and aggregator agents are related 

to battery storage systems and electric vehicles. For this purpose, two models were de-

signed and developed. The first considers the aggregation of electric vehicles considering 

their zonal distribution throughout time (see D4.2, subsection 3.2.2). This model supports 

the actions of the aggregator when negotiating electric energy in the market, flexibility, or 

when managing local areas and running local markets. This model considers mini-

mum/maximum energy limit, charging/discharging power, and charging/discharging effi-

ciency. The second model (see also D4.2, subsection 3.2.2) is related to potentiating load 

shifting by making use of the flexibility brought by the electric vehicles and the batteries. 

The battery energy storage management system considering real-time pricing was de-

signed to be used by the prosumer, producer, aggregator, wholesale market operator, and 

local/community market operator agents with particular focus on potentiating demand flex-

ibility (details also in D4.1, subsection 3.3.2.2). Pumped hydropower storage models were 

also designed for producers, suppliers, and aggregators. 

To use these models, the respective players, namely the aggregator and market oper-

ators, must interact with the TSO and DSO for the sake of the power network stability. In 

this way, new models were designed and developed to support the capabilities of the TSO 

and DSO agents. To this end, the power flow service detailed in D4.5 allows any actor 

with the role of power network validator (e.g., DSO, TSO, aggregator) to perform an elec-

tric grid validation considering any type and topology of distribution or transmission net-

work. The user can select from a large set of available grids and power flow algorithms. A 

new power network, or updates to an existing one, may also be provided by the user and 

added to the service's database for future reuse. This model addresses all relevant as-

pects related to the network, including network topology, voltage limits, thermal capacity, 

and line/node characteristics. In this way, the actors can undertake network validation 

actions that enrich the diversity of flexibility of the market models and scenarios to exper-

iment with the project. 

Regarding the actor's behaviours, considering the project's objectives, a few behav-

iours were considered, designed, and developed for different models, namely: 

 Utility maximization, environmental, social, sustainability concerns, and legislation 

standards apply to all actors as appropriate. Different models (e.g., [86]) were de-

veloped for distinct actors. 

 Cost minimization and profit maximization (e.g., [87]) were also considered for 

several players from consumers to producers, prosumers, and market operators 

(wholesale and local/community) 

 Comfort standards were considered for prosumers and aggregators [86], safety 

standards for TSOs and DSOs (e.g., [88]), and attitude to risk for prosumers, pro-

ducers, suppliers and aggregators [89]. 
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4.2.4. RESTrade 

Under the TradeRES project, the traditional agents are going to be improved concern-

ing the new market designs of power systems with near 100% RES. The upgrades of the 

agent models will be performed under a strong collaboration with ISEP. LNEG will focus 

on the supply side, while ISEP will have a stronger contribution on the consumers’ side. 

 Producers: 

Producer agents that own vRES power plants will adapt their participation on mar-

kets according to i) the different vRES support schemes, ii) no support mecha-

nisms, and iii) also considering the possibility of these players participating in the 

balancing and reserves markets. Producers will also adapt the planning process of 

their traditional power plants operation, according to the new markets’ gate clo-

sures and to the new time units. Producers will have their optimization formulation 

adapted to consider their participation in capacity markets.  

 Aggregator: 

Within the TradeRES project, an “aggregator” is a player that aggregates the con-

sumption and/or production of electricity acting as a single entity [90]. This player 

embeds different approaches/concepts being responsible for i) the interactions 

with the electricity markets, and ii) providing ancillary services to TSO under some 

concepts. Thus, several subclasses of aggregators have already been designed 

within the TradeRES project, such as single technology aggregation as the afore-

mentioned wind aggregator, but also vRES aggregators, citizen energy communi-

ties (CECs), and hybrid renewable power plants (HyPPs). Each subclass is differ-

entiated according to its intrinsic features (for example, objective function or tech-

nologies included) as presented below. 

- VRES generation aggregation: Further enhancements of the existing single 

technology aggregation approaches will be pursued in TradeRES using optimi-

zation strategies instead of clustering-based approaches. These approaches 

will be extended for solar PV to identify the potential benefits of aggregation of 

different vRES technologies, as reported by some authors [91]. This step is par-

ticularly important for devising an aggregation dispatch strategy that can in-

crease the value of vRES generation into electricity markets while contributing 

to transform the power production from these technologies into a more reliable 

energy source. The aggregation strategies are defined a priori by indicating de-

sirable connections (physical or virtual) of a set of vRES power plants according 

to the optimization strategies. The interaction with the electricity market is per-

formed through the aggregator agent. 

- CECs are composed of the same parties of a typical aggregator: RES, con-

sumers, prosumers, batteries, etc. However, it only operates on the distribution 

level and its main behavior comprises a cost minimization and a maximization 

of the efficiency regarding the use of the local energy resources considering 

DSM and DR [92]. It can participate in spot and bilateral markets. Its participa-
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tion in balancing markets will be tested considering its technical capabilities to 

do so. It can negotiate bilateral agreements with producers and suppliers.  

- HyPPs are co-located power plants that combine two or more renewable re-

sources, with (or without) energy storage systems [93]. One of the main goals 

of this concept is to explore the natural complementarity between the primary 

resources of renewable energy sources within a HyPP and their synergy to at-

tain operational set-points. It is a crucial step to obtain a smart energy man-

agement of renewable energy generation through a strategic bid-

ding/participation in the different electricity market frameworks. Other main rec-

ognized advantages of HyPPs include [94]: 

 An increased load factor of transmission lines, allowing to postpone new in-

vestments in grid infrastructure. 

 An increased capacity factor and smoother power output, taking advantage 

of renewable resources' natural complementarity. 

 Reduced power system's balancing costs due to “more dispatchable" gen-

eration, especially if a storage system is in place. 

 These power plants can be operated both in stand-alone and grid-

connected mode. Their behaviour typically follows a cost minimization 

when operating in stand-alone applications [95], [96] and a maximization of 

profit in grid connect applications [97]. 

 These power plants can participate in spot and bilateral markets. The par-

ticipation of these power plants in ancillary services markets will be tested 

considering their technical capabilities and the regulations in place. 

 Consumer/prosumer: 

 Each consumer and prosumer will inform the aggregator regarding its expected 

flexible and inflexible consumption/net load and respond to prices defined by the 

CEC or aggregator. The flexible consumption will be used to promote load shifting 

aiming to minimize the energy costs for this type of players. Further flexibility will 

be introduced in prosumer players by considering battery energy storage man-

agement systems and their technical capabilities to minimize the energy costs.   

 TSO:  

The TSO agent will be enhanced by incorporating the new market designs, mech-

anisms, products, and rules developed in TradeRES project [82]. This agent will in-

teract with the traditional and new players according to the rules defined for each 

agent. Furthermore, the TSO will also be responsible to apply different mecha-

nisms of the aFRR capacity procurement namely, considering also the vRES fore-

cast and an asymmetrical procurement, which according to [98] may allow increas-

ing the level of efficiency of this mechanism and is already in place in some coun-

tries [99]. The TSO will also be responsible for managing the cross-border balanc-

ing market considering a DyLR analysis in case of congested tie-lines between dif-

ferent market zones. 
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Table 7 illustrates the main characteristics of these agents developed. Figure 6 presents 

the architecture of the RESTrade system that already has several agents and mecha-

nisms, but also foregrounds models under development. 

Table 7: RESTrade’s (future) agents’ characteristics. 

Class of Actor Number of Agent(s) New Functions Interacts with 

Producer ~10 with multiple power 

plants 

Profit maximization consid-

ering capacity markets and 

vRES support schemes.  

Suppliers, Aggrega-

tors TSOs and 

CECs 

Aggregator 

- vRES 
- CEC 
- HyPP 

>10 considering differ-

ent types of aggrega-

tions 

 

vRESs and HyPPhave the 

goal of maximizing their 

profit. CECs have the goal 

of minimizing costs for the 

consumers/prosumers. 

Consumers, 

Prosumers, Pro-

ducers, Suppliers 

and TSO 

Prosumer >100 considering dif-

ferent power net load 

profiles 

Computation of inflexible 

and flexible net loads. Cost 

minimization 

Suppliers and 

CECs 

TSO 1 Increase social welfare Suppliers and ag-

gregators. 

 

Figure 6: Main architecture of the RESTrade system.Blue-filled boxes correspond to back-

ground and foreground modules with open access within the project. 
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5. Actors in the LEM Simulation Framework 

The Local Energy Market (LEM) Simulation Framework aims to support the more fo-

cused investigation of market design aspects that deal with the interactions within local 

environments. This is led by the Imperial College London and is performed complemen-

tary to the studies that exploit the previously discussed ABMs, with the simulation activi-

ties being part of TradeRES Task 5.2, which includes the performance assessment of 

current and new market designs and trading mechanisms for local energy community. 

Figure 7 depicts the areas of focus with respect to Figure 2 that sets interactions in the 

context of deregulated electricity markets. Two local environments are distinguished, one 

that sets more broad boundaries and includes the retailer and a narrower one that con-

centrated the interest in the interaction between the prosuming entities and the LEM. The 

environment of the more holistic approach can also be defined, with the integration of the 

wholesale market and the consideration of the networks. As it can be seen in Figure 7, the 

prosuming entities may be related to several vectors and technologies, while the certain 

instances than can be developed through the different combinations are mapped to al-

ready known and established actors. Indicative examples are the generators in their dis-

tributed and micro-scale form, the consumers that can be flexible about their demand, the 

energy storage asset owners, as well as the energy communities resulted by the for-

mation of coalitions. 

 

Figure 7: Areas of LEM Simulation Framework focus. 
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5.1 Strategic behaviour  

The multi-layer interactions among competing and cooperative actors in the electricity 

market constitute a game and game theory offers the theoretical framework for these indi-

vidual actors who can optimize their decision-makings in a strategic setting. This strategic 

behaviour involves the acknowledgement of the influence that the choice of an individual 

may have to the choices made by others and is linked to the anticipation of the expecta-

tion in the decision-making process. As discussed in Section 2, the strategic setting con-

trasts with the price-taker assumption, where individuals take prices as given without con-

sidering that their actions affect the formation of the price and is suitable for cases of in-

creased competitiveness with many participants. Considering the LEM, which by definition 

are small market structures, the adoption of game-theoretical formulations seems appro-

priate as the strategic behaviour becomes even more significant. On the other hand, there 

is the increased complexity of reality that requires generous simplification in certain cases. 

Exactly on that trade-off, ABMs offer a decent compromise and specifically as far as the 

electricity market modelling is concerned have been continuously gaining ground. 

5.2 Information levels 

Another significant part deals with the information exchange and the information sets 

available during the decision-making process. Variations of the different levels of available 

information may include the extreme cases of private and perfect information respectively 

as well as the case where the information sets are incomplete. There are situations where 

the flow of information is imposed by the rules and is coordinated centrally but there are 

also examples where estimations or biased values are used, making the players myopic. 

The information flow as well as its integration in the decision-making process is know for 

its effect in the convergence and stability of the models [100]. Although it is common to 

assume the agents to be rational, there are several behavioural characteristics that can 

lead to deviating behaviours, as those described in Section 3.2. Deviations can also be 

due to the limited knowledge and understanding of the agents, who in lack of sufficient 

information may have to deal with a black box, making process adjustments and learning 

naturally attractive. Uncertainty around environmental parameters in several cases can be 

delt in a similar way to the adoption of a distribution for replacing the expectation but 

should not be related to the private information concept.   

Table 8: Actor classes included in the LEM Simulation Framework. 

Supplier 
 

Prosumer 

- Independent flexible consumer 

- Independent micro-generator 

- Independent storage owner 

Generic 

Prosumer 

Energy Community 

(Cluster of Prosumers) 

 

LEM Operator 

Centralised clearing Mid-market Rate Clearing Double-auction Clearing 
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5.3 Sub-models of actors 
The main actor classes involved in the LEM Simulation Framework, which correspond 

directly to the entities of Figure 7, are presented in Table 8. The subsections that follow 
aim to elaborate on their integration into the framework by emphasizing on the assump-
tions made and providing example formulations for the corresponding sub-models. 

5.3.1. Supplier 

By assuming a self-interested supplier, the interaction with its client base and the 

wholesale market is mainly governed by the aim to maximize the overall profit. The client 

base consists of end-users that behave independently and have predefined portfolio of 

assets for local micro-generation, residential consumption, and energy storage, while be-

ing characterised by distinct operating properties.  The business model of the supplier is 

based on the provision of differentiated prices to its client base for buying and selling en-

ergy and the trading in the wholesale market for acquiring the aggregated consumption 

and marketizing any excess generation. Although the buy/sell prices are not differentiated 

between the customers for not being discriminatory, it is possible to differ between times. 

This can be considered more as a market design parameter, since it is related to the retail 

tariffs (D4.5), with the distinction being made between flat, time-of-use (ToU) and dynamic 

pricing regimes. The flat tariffs refer to the case where the offered retail prices (for both 

buying and selling energy) are constant throughout the examined daily horizon or during 

certain intervals of this horizon (e.g., peak and off-peak periods), while the ToU structure 

enables the supplier to offer hour-specific retail (buy and sell) prices to its customers. The 

dynamic prices can extend the differentiation of price during time, taking into account the 

wholesale price evolution and the network conditions, with the latter not being considered 

further.    

An example formulation of the decision-making problem of the supplier in the context of 

the “Broad Local Environment” can take the following form.  As a business entity main aim 

is the maximization of profits in its simplified form, i.e., the difference between operational 

revenues and variable costs, where the exact business structure and the fixed costs are 

not considered. The supplier perceives demand and generation endpoints as different for 

metering purposes, while in the case of a single prosumer 𝑖 and 𝑗 may correspond to the 

same end user. Similarly, the energy storage assets considered are operating only on a 

not self-consumption mode, aiming to benefit from differences in prices.  

 

 

max{𝜆𝑡𝑏,𝜆𝑡𝑠,𝑤𝑡}
∑ 𝜆𝑡

𝑏(∑ 𝑑𝑖,𝑡𝑖 + ∑ 𝑠𝑘,𝑡
𝑐

𝑘 + 𝑢𝑡𝑛𝑡)𝑡 − ∑ 𝜆𝑡
𝑠(∑ 𝑔𝑗,𝑡𝑗 +∑ 𝑠𝑘,𝑡

𝑑
𝑘 + (𝑢𝑡 − 1)𝑛𝑡)𝑡 − ∑ 𝜆𝑡

𝑤𝑤𝑡𝑡  

(5.1) 

subject to  

 

𝜆𝑚𝑖𝑛 ≤ 𝜆𝑡
𝑏, 𝜆𝑡

𝑠 ≤ 𝜆𝑚𝑎𝑥, ∀𝑡 ∈ 𝑇                                         (5.2) 

∑ 𝑑𝑖,𝑡𝑖 − ∑ 𝑔𝑗,𝑡𝑗 + ∑ (𝑠𝑘,𝑡
𝑐 − 𝑠𝑘,𝑡

𝑑 )𝑘 + 𝑛𝑡 = 𝑤𝑡, ∀𝑡 ∈ 𝑇                      (5.3) 
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The following components are included in the objective function (5.1) that sets the 

overall profits of the supplier:  

i) its revenues from selling energy to demand points, including energy consump-

tion of end users ∑ 𝑑𝑖,𝑡𝑖  and the charging of storage assets ∑ 𝑠𝑘,𝑡
𝑐

𝑘 , as well as 

the energy sales to another entity (e.g., LEM) 𝑢𝑡𝑛𝑡.  

ii) its costs of buying energy from generation points, including the micro-

generators ∑ 𝑔𝑗,𝑡𝑗 , the storage assets during their discharging phase ∑ 𝑠𝑘,𝑡
𝑑

𝑘  

and the other entity for when energy is sold to the supplier (𝑢𝑡 − 1)𝑛𝑡.  

iii) its net cost in the wholesale market, i.e., the cost or revenue of buying or sell-

ing energy 𝑤𝑡 in the wholesale market respectively. 

The retail buy and sell prices offered by the supplier 𝜆𝑡
𝑏 , 𝜆𝑡

𝑠, as decision variables of 

the supplier and are subject to the regulatory constraints (5.2) which lower and upper 

bound them respectively for protecting the customers and preventing the supplier from 

making excessive profits. Constraints (5.3) express the energy balance constraints of the 

retailer, where the net energy traded with its customers should be equal to the net energy 

traded with the wholesale market at each period. 

 

5.3.2. Prosumer 

According to D3.2 the Prosumer actor class incorporates the final users and/or groups 

of users who consume, store, self-generate, participate in flexibility or energy efficiency 

schemes in a not primary commercial or professional way. To that extent, prosumers can 

be distinguished based on their type to residential, enterprise and industrial prosumers, 

while their grouping sets the community prosumer. For the integration of this actor class 

into the LEM Simulation Framework different instances are considered. For distinguishing 

the extreme independent instances, the flexible consumer, the independent micro-

generator and the energy storage asset owner adopt the different operations separately. 

The generic prosumer instance incorporates all the operations (demand, supply, and stor-

age) in which a prosumer can be involved and is considered the maximal case with re-

spect to the technology integration aspect, while the aggregation of the aforementioned 

instance is forming a coalition of prosumers – the energy community – that operates un-

der cooperative goals such as the maximization of the welfare of the community and/or 

the maximization of self-consumption.  

 

5.3.2.1. Independent instances 

a) Flexible Consumer 

Although this player may integrate several technologies, from a behavioural perspec-

tive its total demanded energy is modelled as the continuous dependent variable of its 

utility function.  Therefore, the flexible consumer aims to maximise the utility perceived 

from covering the maximum demand (exogenous time series) to the extent of his choice, 

given the retail (buy) prices determined by the supplier. An example formulation of this 

problem in the context of the “Broad Local Environment” can be the following:  



 

Page 45 of 63 

max{𝑑𝑖,𝑡}∑ (𝑙𝑖,𝑡
𝐷 𝑑𝑖,𝑡 − 𝑞𝑖,𝑡

𝐷 𝑑𝑖,𝑡
2 )𝑡 − ∑ 𝜆𝑡

𝑏𝑑𝑖,𝑡𝑡                                      (5.4) 

 

subject to  

 

0 ≤ 𝑑𝑖,𝑡 ≤ 𝑑𝑖,𝑡
𝑚𝑎𝑥 , ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇                                         (5.5) 

 

Equations (5.4) - (5.5) present the optimization problem of the flexible prosumer, who 

aims to maximizes the utility perceived, which is defined as the difference between  

i) the benefit/satisfaction received from the use of energy, 

ii) the cost paid for buying energy from the supplier.  

 

Constraint (5.5) expresses the flexibility of independent flexible consumer 𝑖 to modify 

its demand 𝑑𝑖,𝑡 within certain limits 𝑑𝑖,𝑡
𝑚𝑎𝑥.   

 

b) Micro-generator  

The micro-generator as an independent instance of prosumer with solely producing 

capabilities is considered to be controllable, for its active participation to be meaningful. 

The objective in such case would be to maximise the returns from its operation, i.e., the 

profits that result from subtracting expenses from the revenues from sales. An example 

formulation in the context of the “Broad Local Environment” can be the following:  

 

max{𝑔𝑗,𝑡}∑ 𝜆𝑡
𝑠𝑔𝑗,𝑡𝑡 − ∑ (𝑙𝑗

𝐺𝑔𝑗,𝑡 + 𝑞𝑗
𝐺𝑔𝑗,𝑡

2 )𝑡                                        (5.6) 

 

subject to  

 

0 ≤ 𝑔𝑗,𝑡 ≤ 𝑔𝑗
𝑚𝑎𝑥 , ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇                                          (5.7) 

 

With the selection of the generation level 𝑔𝑗,𝑡, the objective function of (5.6) is maxim-

izing the profits of the independent micro-generator 𝑗, which is given by the difference 

between: 

i) its revenue from the energy sales to the supplier, 

ii) its costs incurred in production. 

 

Constraint (5.7) expresses the power output limits of the micro-generator. 

 

c) Storage owner 

The energy storage asset owner aims to maximise the revenues gained by selling 

when the price is high energy that has been purchased during periods of low prices, ex-

ploiting that way the intraday spread (referred in D3.5 as “time arbitrage”). The constraint 

optimization problem of the energy storage asset owner aims to set the best possible op-
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eration points (charging and discharging actions) given the prices set by the retailer for 

buying and selling energy. An example formulation in the context of the “Broad Local Envi-

ronment” can be the following: 

 

max
{𝑠𝑘,𝑡
𝑐 ,𝑠𝑘,𝑡

𝑑 ,𝐸𝑘,𝑡}
∑ 𝜆𝑡

𝑠𝑠𝑘,𝑡
𝑑

𝑡 − ∑ 𝜆𝑡
𝑏𝑠𝑘,𝑡

𝑐
𝑡                                             (5.8) 

 

Subject to  

 

𝐸𝑘,𝑡 = 𝐸𝑘,𝑡−1 + 𝑠𝑘,𝑡
𝑐 𝜂𝑘

𝑐 − 𝑠𝑘,𝑡
𝑑 𝜂𝑘

𝑑⁄ , ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇                              (5.9) 

𝐸𝑘
𝑚𝑖𝑛 ≤ 𝐸𝑘,𝑡 ≤ 𝐸𝑘

𝑚𝑎𝑥, ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇                                   (5.10) 

0 ≤ 𝑠𝑘,𝑡
𝑐 ≤ 𝑠𝑘

𝑚𝑎𝑥 , ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇                                       (5.11) 

0 ≤ 𝑠𝑘,𝑡
𝑑 ≤ 𝑠𝑘

𝑚𝑎𝑥 , ∀𝑘 ∈ 𝐾, ∀𝑡 ∈ 𝑇                                       (5.12) 

𝐸𝑘
0 = 𝐸𝑘,𝑡 , ∀𝑘 ∈ 𝐾, ∀𝑡 = |𝑇|                                          (5.13) 

 

The objective function in (5.8) includes the profits of the energy storage provider 𝑘, 

with the formulation aiming to maximise the difference between  

i) its revenues from selling energy to the retailer when discharging 𝑠𝑘,𝑡
𝑑  and  

ii) its costs of buying energy from the retailer when charging 𝑠𝑘,𝑡
𝑐 .  

 

The problem is constraint, with (5.9) expressing the energy balance of the energy stor-

age asset 𝐸𝑘,𝑡 (charging/discharging losses are included), constraint (5.10) represents its 

minimum and maximum energy limit set by the asset’s capacity and suggested depth-of-

discharge (DoD), (5.11) - (5.11) include the charging/discharging power limits and (5.13) 

expresses the energy neutrality assumption, i.e., the energy content of the asset at the 

start and the end of the examined horizon are assumed equal. 

 

5.3.2.2. Generic Prosumer 

The generic prosumer instance incorporates all the operations in which a prosumer 

may be involved. Although the operations are again distinct, a more detailed representa-

tion of the integrated technologies is considered more appropriate for the generic case to 

bring further accuracy to the framework. Therefore, a wide range of small-scale DER is 

considered for covering the electrified versions of vectors, with the households having 

resources of non-shiftable demand (e.g., lighting, electronic devices such as TV and com-

puters), different types of shiftable loads such as EV, Smart Appliance and H&C systems, 

as well as PV panels, and ESS. The following paragraphs aim to present those resources 

and establish links to the operational dimension aspects of Section 3.1, by highlighting the 

operational constraints that different types of DER bring to the framework.  
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a) Electric vehicle  

The electric vehicles present storage capabilities, while the grid-to-vehicle (G2V) and 

vehicle-to-grid (V2G) modes of operation set the differences in modelling. In the former, 

the EV acts as a flexible load, with charging phase having the ability to span throughout 

the parking period. In the latter, the EV acts also as an energy storage asset of variable 

connection status, an operation complementary to that of flexible load. An example formu-

lation in the context of the “Narrow Local Environment” would include the following con-

straints: 

The storage dynamic model of EV battery energy 𝐸𝑡
𝑒𝑣 at each time slot 𝑡 can be formu-

lated as: 

 

𝐸𝑡+1
𝑒𝑣 = 𝐸𝑡

𝑒𝑣 + 𝑃𝑡
𝑒𝑣𝑐∆𝑡𝜂𝑒𝑣𝑐 + 𝑃𝑡

𝑒𝑣𝑑∆𝑡/𝜂𝑒𝑣𝑑 − 𝐸𝑡
𝑐𝑜𝑚   (5.14) 

(1 − 𝐷𝑜𝐷𝑒𝑣,𝑚𝑎𝑥)𝐸𝑒𝑣,𝑚𝑎𝑥 ≤ 𝐸𝑡
𝑒𝑣 ≤ 𝑆𝑜𝐶𝑒𝑣,𝑚𝑎𝑥𝐸𝑒𝑣,𝑚𝑎𝑥           (5.15) 

0 ≤ 𝑃𝑡
𝑒𝑣𝑐 ≤ 𝑉𝑡

𝑒𝑣𝐴𝑡
𝑒𝑣𝑃𝑒𝑣,𝑚𝑎𝑥          (5.16) 

−(1 − 𝑉𝑡
𝑒𝑣)𝐴𝑡

𝑒𝑣𝑃𝑒𝑣,𝑚𝑎𝑥 ≤ 𝑃𝑡
𝑒𝑣𝑐 ≤ 0      (5.17) 

𝐸
𝑡𝑑𝑒𝑝
𝑒𝑣 ≥ ∑ 𝐸𝑡

𝑐𝑜𝑚
𝑡      (5.18) 

 

Equation (5.15) constitutes the storage dynamic model of EV battery energy 𝐸𝑡
𝑒𝑣  at 

each time slot 𝑡 . Parameters 𝜂𝑒𝑣𝑐 ∈ (0,1]  and 𝜂𝑒𝑣𝑑 ∈ (0,1]  indicate respectively the EV 

charging and discharging efficiency, 𝐸𝑡
𝑐𝑜𝑚 represents the energy requirement for commut-

ing purposes at time slot 𝑡, while 𝑃𝑡
𝑒𝑣𝑐 and 𝑃𝑡

𝑒𝑣𝑑 indicate respectively the EV charging and 

discharging power. The power rate of EV is 𝑃𝑡
𝑒𝑣 = 𝑃𝑡

𝑒𝑣𝑐 + 𝑃𝑡
𝑒𝑣𝑑  since 𝑃𝑡

𝑒𝑣𝑐  and 𝑃𝑡
𝑒𝑣𝑑  are 

assigned with different signs, i.e. 𝑃𝑡
𝑒𝑣𝑐 ≥ 0 and 𝑃𝑡

𝑒𝑣𝑑 ≤ 0. 

The EV energy content is limited by its battery energy capacity 𝐸𝑒𝑣,𝑚𝑎𝑥, and is also re-

lated to its battery maximum depth of discharge rate 𝐷𝑜𝐷𝑒𝑣,𝑚𝑎𝑥 and the maximum state of 

charge rate 𝑆𝑜𝐶𝑒𝑣,𝑚𝑎𝑥, respectively as it can be seen in (5.15). 

The charging and discharging power variables, i.e., 𝑃𝑡
𝑒𝑣𝑐 and 𝑃𝑡

𝑒𝑣𝑑, are less than the 

power capacity of the EV at each time slot 𝑡 and this is ensured by constraints (5.16) and 

(5.17), where 𝑃𝑒𝑣,𝑚𝑎𝑥 is the maximum charging and discharging power rate of the EV. 𝐴𝑡
𝑒𝑣 

represents the connection to the grid status of the EV; 𝐴𝑡
𝑒𝑣 = 1  for the time slot 𝑡 ∈

[0, 𝑡𝑑𝑒𝑝) ∪ (𝑡𝑎𝑟𝑟, 𝑇] and 𝐴𝑡
𝑒𝑣 = 0 for the time slot 𝑡 ∈ [𝑡𝑑𝑒𝑝, 𝑡𝑎𝑟𝑟], where 𝑡𝑑𝑒𝑝  and 𝑡𝑎𝑟𝑟  de-

note the departure and arrive time of EV, respectively. The binary variable 𝑉𝑡
𝑒𝑣 ∈ {0,1} that 

represents the charging mode (𝑉𝑡
𝑒𝑣 = 1) or discharging mode (𝑉𝑡

𝑒𝑣 = 0) of the vehicle are 

used to avoid the simultaneous charging and discharging. 

Finally, (5.18) ensures the charging level of the EV upon departure at 𝑡𝑑𝑒𝑝 to be suffi-

cient for the travelling plan. 

 

b) Smart appliances 

The load of smart appliances that operate in fixed and deferable cycles is an indicative 

case of flexible loads that can enable the response of the demand side to price signals. 
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Wet appliances such as the dishwashers, the washing machines and the dryers constitute 

typical examples of appliances of which the demand depends on the mode of operation 

and modes correspond to certain energy consumption levels having fixed durations.  

The deferability of the cycles up to a maximum delay limit set by the user can the flexi-

bility such smart appliance can offer. Although there can be pauses during the cycles 

(e.g., dryers) or between the modes the cycles are considered non-adjustable and inter-

ruptible so that after the activation occurs the phases cannot be modified and the appli-

ance operated according to the modes until the end of the cycle. D4.5 includes a sche-

matic comparison between the cases of continuously adjustable power with flexible shift 

intervals and fixed cycles with discretized power states. 

By assuming one activation of a single operational cycle per day, an example formula-

tion in the context of the “Narrow Local Environment” takes into account the earliest initia-

tion time 𝑡𝑖𝑛 and latest termination time 𝑡𝑡𝑒𝑟 set by the user during the temporal horizon 

and can be based on the following constraints: 

 

∑ 𝑉𝑡
𝑤𝑎𝑡𝑡𝑒𝑟−𝑇𝑑𝑢𝑟+1

𝑡=𝑡𝑖𝑛 = 1     (5.19) 

𝑃𝑡
𝑤𝑎 = ∑ 𝑉𝑡+1−𝜏

𝑤𝑎𝑇𝑑𝑢𝑟
𝜏=1 𝐴𝑡

𝑤𝑎𝑃𝜏
𝑐𝑦𝑐

        (5.20) 

 

Constraint (5.19) imposes one activation on the eligible time frame, given the duration 

of the cycle of the smart appliance 𝑇𝑑𝑢𝑟, through the binary variable 𝑉𝑡
𝑤𝑎 that indication 

the initiation of the cycle at time point 𝑡 (𝑉𝑡
𝑤𝑎 = 1 at the initiation time point; 𝑉𝑡

𝑤𝑎 = 0 oth-

erwise). The demand of appliance at time 𝑡, 𝑃𝑡
𝑤𝑎, is expressed with respect to the activa-

tion binary variable 𝑉𝑡
𝑤𝑎, the scheduling availability parameter 𝐴𝑡

𝑤𝑎 (𝐴𝑡
𝑤𝑎 = 1 for the appli-

ance scheduling period 𝑡 ∈ [𝑡𝑖𝑛, 𝑡𝑡𝑒𝑟] and 𝐴𝑡
𝑤𝑎 = 0 otherwise), and the power demand at 

each time slot 𝜏 of the cycle 𝑃𝜏
𝑐𝑦𝑐

. 

 

c)  Heating and Cooling (H&C) 

Heating and cooling systems such as the heating, ventilating and air conditioning 

(HVAC) systems can be controlled by the households to maintain the indoor temperature 

to comfort levels by warming the space in the winter and cooling it in the summer. 

Through the operation of an HVAC system the electric energy is transformed to thermal, 

offering the comfort living conditions that the user specifies. The exact power demand is 

difficult to be determined due to the many factors (weather conditions, indoor temperature, 

insulation, energy efficiency, etc) that influence the dynamic behaviour of the system. 

Nevertheless, the flexibility in operation of HVAC systems lies in the thermal capacity of 

the building and the allowance of an indoor temperature range by the users, within which 

their thermal comfort is preserved.  

An example formulation in the context of the “Narrow Local Environment” would incor-

porate the following constraints: 

 

𝐻𝑚𝑖𝑛 ≤ 𝐻𝑡
𝑖𝑛 ≤ 𝐻𝑚𝑎𝑥         (5.21) 
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𝐻𝑡+1
𝑖𝑛 = 𝐻𝑡

𝑖𝑛 − (𝐻𝑡
𝑖𝑛 −𝐻𝑡

𝑜𝑢𝑡 + 𝜂ℎ𝑣𝑎𝑐𝑅ℎ𝑣𝑎𝑐𝑃𝑡
ℎ𝑣𝑎𝑐)Δ𝑡/(𝐶ℎ𝑣𝑎𝑐𝑅ℎ𝑣𝑎𝑐)      (5.22) 

0 ≤ 𝑃𝑡
ℎ𝑣𝑎𝑐 ≤ 𝑃ℎ𝑣𝑎𝑐,𝑚𝑎𝑥     (5.23) 

 

Constraints (5.21) ensure the thermal comfort by setting the indoor temperature at time 

𝑡, 𝐻𝑡
𝑖𝑛, within the range that 𝐻𝑚𝑖𝑛 and 𝐻𝑚𝑎𝑥, minimum and maximum indoor temperature, 

define. Given the outdoor temperature 𝐻𝑡
𝑜𝑢𝑡 and the slack the indoor temperature 𝐻𝑡

𝑖𝑛 of-

fers, the operation of the HVAC system can be scheduled by the optimal specification of 

its power demand, 𝑃𝑡
ℎ𝑣𝑎𝑐. Equation (5.22) is the difference equation that models the indoor 

temperature evolution based on the thermal capacity (𝐶ℎ𝑣𝑎𝑐) and resistance (𝑅ℎ𝑣𝑎𝑐) of the 

building and the energy efficiency 𝜂ℎ𝑣𝑎𝑐 of the HVAC system, which acts as a constraint. 

Finally, the power consumption of the system 𝑃𝑡
ℎ𝑣𝑎𝑐 is assumed to be a continuous varia-

ble within certain operation limits as it can be seen in (5.23). This assumption is totally 

realistic since time 𝑡 stands for a time interval (slot) during which the system may transi-

tion between different discrete operation states, allowing 𝑃𝑡
ℎ𝑣𝑎𝑐 to take any value between 

the consumption of the no-operation and full-operation during the slot cases. 

 

d) Energy Storage System 

Although there can be different technologies in the implementation of an ESS, the se-

lection of which depends highly on the scale of the application and is highly related to 

technical and economic concerns, the constraints of the example formulation in the con-

text of the “Narrow Local Environment” are quite general closely related to the storage 

owner sub-model of Section 5.3.2.1. 

 

𝐸𝑡+1
𝑒𝑠 = 𝐸𝑡

𝑒𝑠 + 𝑃𝑡
𝑒𝑠𝑐∆𝑡𝜂𝑒𝑠𝑐 + 𝑃𝑡

𝑒𝑠𝑑∆𝑡/𝜂𝑒𝑠𝑑    (5.24) 

(1 − 𝐷𝑜𝐷𝑒𝑠,𝑚𝑎𝑥)𝐸𝑒𝑠,𝑚𝑎𝑥 ≤ 𝐸𝑡
𝑒𝑠 ≤ 𝑆𝑜𝐶𝑒𝑠,𝑚𝑎𝑥𝐸𝑒𝑠,𝑚𝑎𝑥          (5.25) 

0 ≤ 𝑃𝑡
𝑒𝑠𝑐 ≤ 𝑉𝑡

𝑒𝑠𝑃𝑒𝑠,𝑚𝑎𝑥                     (5.26) 

−(1 − 𝑉𝑡
𝑒𝑠)𝑃𝑒𝑠,𝑚𝑎𝑥 ≤ 𝑃𝑡

𝑒𝑠𝑑 ≤ 0         (5.27) 

 

The difference equation of (5.24) is time-coupling constraint that encapsulated the dy-

namic model of the ES energy level 𝐸𝑡
𝑒𝑠 at each time 𝑡. The charging and discharging effi-

ciency coefficients are parameters  𝜂𝑒𝑠𝑐 and 𝜂𝑒𝑠𝑑 respectively, while 𝑃𝑡
𝑒𝑠𝑐 and 𝑃𝑡

𝑒𝑠𝑑 and the 

charging and discharging power of the ESS. Here again the power variables are assigned 

with different signs (i.e., 𝑃𝑡
𝑒𝑠𝑐 ≥ 0 and 𝑃𝑡

𝑒𝑠𝑑 ≤ 0), while constraints (5.26) and (5.27) im-

pose the power rating limits of operation. The energy stored in the ESS is limited by its 

capacity 𝐸𝑒𝑠,𝑚𝑎𝑥, and is also related to its maximum depth of discharge rate 𝐷𝑜𝐷𝑒𝑠,𝑚𝑎𝑥 

and the maximum state of charge 𝑆𝑜𝐶𝑒𝑠,𝑚𝑎𝑥.  

 

5.3.2.3. Energy Communities  

The establishment of a union with local communal characteristics and common goals, 

strongly related to energy has been considered as a significant facilitator towards the real-
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ization of the distributed paradigm in a decentralised, citizen-engaging and socially effi-

cient way. According to D3.2, the energy community as an actor has been considered to 

belong to the Prosumer class since the consumption, generation and storage of energy 

can be the main activities in which it is involved. Although many business models are 

foreseen for communities, the most promising ones are related to the maximization of self-

consumption, the minimization of peak demand, the participation in local markets, the pro-

vision of ancillary services, and the development/operation of local assets (e.g., EV charg-

ing stations, public dimmable lighting, etc.). In [101] four main categories are presented 

and reviewed with respect to barriers and the applicability potential. The foreseen report of 

T5.2 is expected to discuss and analyse further this topic from the same perspective, giv-

en that the market design assessment is strongly related to the LEM simulation framework 

considered here. Finally, in the context of the framework, the energy communities are 

considered as coalitions of individuals, with the assets being grouped together and their 

operation considered joint. 

 

5.3.3. LEM Operator  

Considering the ongoing decentralisation and decarbonization, the fundamental struc-

ture of power system is altered by the increasing penetration of large-scale small-size 

prosumers with DERs and the enhancement of the system’s flexibility. However, this para-

digm greatly complicates the operation of the system, as the effective coordination of such 

large numbers of prosumers involves very significant communication and computational 

scalability challenges as well as privacy concerns. The local markets have recently 

emerged as approaches to deal with the coordination challenge of localized prosumers in 

distribution grid.  

The operators of such markets enable prosumers to trade locally, but also coordinate 

the energy exchanges between prosumers and the upstream grid and address local net-

work problems. In the context of D3.2, the Local Energy Market Operator is considered to 

belong to the Operators class which includes the entities that are responsible for the op-

eration of a system of an either physical or economic interpretation. Moreover, the local 

market beyond the coordination benefit can reduce net demand peaks and network loss-

es, resulting in avoidance or deferral of capital-intensive network reinforcements. 

In the “Broad Local Environment”, where the supplier is included in a strategic manner 

offering the strategic retail prices, the emphasis is on the interaction that spans in the 

three layers defined in D3.2, the physical layer that includes the prosumers, the aggrega-

tion layer and market layer. Therefore, the focus is more on the interaction among differ-

ent layers and less on the internal operation process of the LEM itself. As such, the as-

sumption of centralised operation in Table 8 can be made, where the LEM operator is 

collecting information from all the participants and proceeds with the clearing. An example 

formulation in that context can be based on the following problem: 

max𝑉𝑙𝑒𝑚 ∑ (𝑙𝑖′,𝑡
𝐷 𝑑𝑖′,𝑡 − 𝑞𝑖′,𝑡

𝐷 𝑑𝑖′,𝑡
2 )𝑖′,𝑡 − ∑ (𝑙𝑗′

𝐺𝑔𝑗′,𝑡 + 𝑞𝑗′
𝐺𝑔𝑗′,𝑡

2 )𝑗′,𝑡 − ∑ 𝜆𝑡
𝑏𝑢𝑡𝑛𝑡𝑡 +∑ 𝜆𝑡

𝑠(𝑢𝑡 − 1)𝑛𝑡𝑡   

(5.28) 
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where 

𝑉𝑙𝑒𝑚 = {𝑑𝑖′,𝑡 , 𝑔𝑗′,𝑡 , 𝐸𝑘′,𝑡, 𝑠𝑘′,𝑡
𝑐 , 𝑠𝑘′,𝑡

𝑑 , 𝑢𝑡 , 𝑛𝑡}                                (5.29) 

subject to  

∑ 𝑑𝑖′,𝑡𝑖′ − ∑ 𝑔𝑗′,𝑡𝑗′ + ∑ (𝑠𝑘′,𝑡
𝑐 − 𝑠𝑘′,𝑡

𝑑 )𝑘′ = 𝑛𝑡: 𝜆𝑡
𝑙𝑒𝑚, ∀𝑡 ∈ 𝑇                 (5.29) 

𝑢𝑡 ∈ {0,1}, ∀𝑡 ∈ 𝑇                                                  (5.30) 

0 ≤ 𝑑𝑖′,𝑡 ≤ 𝑑𝑖′,𝑡
𝑚𝑎𝑥, ∀𝑖′ ∈ 𝐼′, ∀𝑡 ∈ 𝑇                                        (5.31) 

0 ≤ 𝑔𝑗′,𝑡 ≤ 𝑔𝑗′
𝑚𝑎𝑥 , ∀𝑗′ ∈ 𝐽′, ∀𝑡 ∈ 𝑇                                        (5.32) 

𝐸𝑘′,𝑡 = 𝐸𝑘′,𝑡−1 + 𝑠𝑘′,𝑡
𝑐 𝜂𝑘′

𝑐 − 𝑠𝑘,𝑡
𝑑 𝜂𝑘

𝑑⁄ , ∀𝐾′ ∈ 𝐾, ∀𝑡 ∈ 𝑇                              (5.33) 

𝐸𝑘′
𝑚𝑖𝑛 ≤ 𝐸𝑘′,𝑡 ≤ 𝐸𝑘′

𝑚𝑎𝑥 , ∀𝑘′ ∈ 𝐾′, ∀𝑡 ∈ 𝑇                                    (5.34) 

0 ≤ 𝑠𝑘′,𝑡
𝑐 ≤ 𝑠𝑘′

𝑚𝑎𝑥 , ∀𝑘′ ∈ 𝐾′, ∀𝑡 ∈ 𝑇                                       (5.35) 

0 ≤ 𝑠𝑘′,𝑡
𝑑 ≤ 𝑠𝑘′

𝑚𝑎𝑥 , ∀𝑘′ ∈ 𝐾′, ∀𝑡 ∈ 𝑇                                        (5.36) 

𝐸𝑘′
0 = 𝐸𝑘′,𝑡, ∀𝑘′ ∈ 𝐾′, ∀𝑡 = |𝑇|                                          (5.37) 

 

The objective function seen in (5.28) is the total surplus of the LEM as it includes the 

total benefit of all the independent instances of the prosumer that participate in the mar-

ket, the total cost faced by the participating micro-generators and the costs or revenues 

emerging from buying or selling transaction with the supplier. The LEM operator, given the 

perfect information sharing context, takes into account the operational constraints of the 

participants (5.31) - (5.37).  

Constraints (5.29) express the energy balance for the LEM, ensuring that the excess 

demand or generation 𝑛𝑡 is traded with the supplier. The dual variables (𝜆𝑡
𝑙𝑒𝑚) of these 

constraints constitute the clearing prices of the LEM. The binary nature of decision varia-

ble 𝑢𝑡 is imposed by (5.30), for the LEM being able to either buy energy (𝑢𝑡 = 1) from the 

retailer or sell energy (𝑢𝑡 = 0) to the supplier at each period. The LEM operator in such 

case provides the operation schedules to independent prosumers that participate into the 

market and makes decision on the trading of the market with the supplier. 

Finally, in the case of the “Narrow Local Environment” where the subject matter turns 

to be the interaction of individual prosumers within the markets, the interest is transferred 

to the internal operation of the LEM. This constitutes the ideal environment for setting up a 

peer-to-peer (P2P) trading case where prosumers are incentivized to trade energy locally 

using a structure of local market that can be facilitated by a platform, as depicted in Figure 

8. As such, the options of each prosumer to supply its consumption loads are diverse. 

First, prosumers can manage their installed energy portfolios to supply their own loads. 

Second, prosumers can trade electricity with each other in the P2P energy trading plat-

form following the well-designed market clearing rules. Third, prosumers are still allowed 

to buy/sell their unbalanced energy with the suppliers at the retail import/export tariffs. The 

trading processes are repeated for each time slot across a daily horizon, with the objective 

of minimizing energy cost. For each participant, it is assumed to have a home energy 

management system for the management of its energy schedules and trading strategies 
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that may consist of price-quantity bids (or quantity bids only) in the P2P energy trading 

platform.  

 

 

Figure 8: P2P trading platform interaction schematic [21]. 

 

To that extent, the local market operator manages the normal operation of P2P energy 

trading and matches multiple buyers (prosumers with energy deficit) and sellers 

(prosumer with energy surplus) who are interested in energy trading. When the local mar-

ket opens, it allows the prosumers to submit their bids/asks with the corresponding price 

and/or quantity information. Then, the local market operator clears the market (whenever 

a new transaction exists between buyers and sellers) and publishes the market outcomes 

(trading prices and quantities) until the market is closed, which are also public for all mar-

ket participants (prosumers) to adjust their trading strategies at the next round of local 

market clearing. Currently, mid-market rate and double auction are two popular market 

clearing rules for P2P energy trading. Further specifications of the process, with the clear-

ing methods and the corresponding algorithms inclusive, are subject to market design 

choices and out of the scope of this deliverable. 
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6. Conclusion 

Summarizing the analysis performed in this final version of the report that deals with 

the representation of actor types and behaviours in the market simulation models, it can 

be said that the ABMs that participate in TradeRES incorporate several agents and pre-

sent great modelling capabilities. The initial versions of the models, i.e., the versions be-

fore the start of TradeRES, have been found to offer an extensive coverage of operational 

attributes and behavioural aspects identified in earlier stages of the project. The modelling 

enhancements related to the agents that have been described in this deliverable, aim to 

provide a more complete, realistic, and contemporary representation of actors in market 

simulation tools through agents. 

The detailed review of the literature that has been performed has provided the neces-

sary background for considering attributes and state-of-the-art methods, linked, and 

adopted by agents, respectively. After an overview of the electricity markets and the 

agent-related modelling approaches, an elaboration on the representation of actors 

through agents provides the framework for translating the operational and behavioural 

characteristics of actors to modelling functionalities of agents. In that context, common 

entities such as the producers, from both the operational and investment time frame, the 

suppliers, the aggregators, the consumers, and the prosumers are considered. Additional-

ly, as far as the methods related to decision-making functioning are concerned, the rule-

based control of agents, the adoption of generic algorithms for finding heuristically sta-

tionary points and the incorporation of adaptation/learning processes have been reviewed. 

It should be stated that although the ABMs that participate in TradeRES constitute an im-

portant part of the literature, they haven’t been included in this review as they are ana-

lysed in more detail in separate sections. 

Given these agent-based modelling principles, the characteristics of actors, as identi-

fied in earlier stages of the project, are considered. The four ABMs that are used in the 

project are examined under the two dimensions adopted for the characterization of actors’ 

needs. Therefore, the coverage of the relations of market actors with (i) technologies, (ii) 

operational attributes and (iii) behavioural aspects offered by the initial versions of ABS is 

identified. Similarly, enhancing directions towards the inclusion of further relations are 

highlighted for the models. This process has been facilitated by the relational tables of 

D3.2, on top of which an extra layer of information has been added. The support to the 

further analysis these new enriched relational tables offered has been threefold. They 

assisted the identification of enhancing directions towards which modelling efforts should 

focus, they offered a coverage overview with respect to the actors’ characterization that 

facilitated coordination of interventions and they enabled the monitoring the improvements 

of added coverage and added value given the pre-identified needs. 

In a similar sense, the more detailed consideration of the ABMs that follows exactly af-

ter the initial evaluation of existing features, the identification of enhancing priorities and 

allocation of modelling improvement between models. In a per model basis, the agent 

instances in the initial versions of the four ABMs are described, while the scheduled im-

provements have been described. There have been several points where reference to 
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other WP4 deliverables has been made, as the concepts involved may lay on the bounda-

ry or even be strongly related to the modelling of flexibility options (D4.1-D4.3) or the mar-

ket design modelling requirements (D4.5). 

The detailed description of the actors that constitute the local environments has been 

an addition to the final version. The supplier, the prosumer and LEM operator actors have 

been examined from the agent/player point of view in the context of the LEM Simulation 

Framework, a development that enables the game-theoretic modelling of interactions at 

the local level. Aspects emerging from the operational dimension and the extensive analy-

sis that has been performed in T3.2 have been integrated into the sub-models and the 

provided formulations are an indicative example of their mapping to the simulation mod-

els.  

Finally, it should be stated that the work of enhancing the representation of the actors 

in the simulation models and tools has been one direction of improvement within the 

TradeRES project. All the enhancements in both the operational and behavioural dimen-

sion complement the strengthening of the models for the more accurate representation of 

reality that will lead to more realistic simulations. Together with the other two directions of 

improvement that deal with the representation of flexibility and of the market designs, this 

work is expected to contribute to the simulations that will be performed in WP5. 
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