

AMIRIS
Agent-based Market model for the Investigation of

Renewable and Integrated energy Systems

Overview
AMIRIS is a next-generation tool to dissect the complex questions with respect

to future energy markets, their market design, and energy-related policy instruments.
The model computes electricity prices based on the simulation of strategic bidding
behavior of prototyped market actors. This enables AMIRIS to not only consider
marginal prices but also support instruments and uncertainties. Figure 1 shows
agents and their associated flows of information, energy, and money modeled in
AMIRIS.

Figure 1 Overview of agents and their interactions in AMIRIS (open version)

Actors are represented as agents and can be roughly divided into six classes:
Power plant operators, traders, marketplaces, policies, demand, and flexibility
option facilities. Power plant operators provide generation capacities to traders, but
do not trade on the markets themselves in the model. Bidding and operation
decisions are conducted by traders in pursuit of, e.g., profit maximization strategies.
Marketplaces serve as trading platforms and determine prices. Policies define a
regulatory framework, which impacts the decisions of other agents. Demand agents
as well as flexibility option facilities, e.g., storage facilities, trade directly in the
electricity market.

User Guide

Inputs
AMIRIS is configured via human-readable YAML files: “scenario.yaml” and

“fameSetup.yaml”. The latter is covered in the section “How to run AMIRIS”. The
scenario file is split into several sections:

The “Schema”-section specifies which types of agents exist, which attributes they
have, which they require and how they can interact with other agents. This section
must not be changed. Typically, a separate schema file is provided to describe
simulation capabilities and requirements. The special YAML loader of FAME-Io
https://gitlab.com/fame-framework/fame-io allows to split and reuse YAML files via
the “!include“-command.

The “Agents”-section defines which agents are to be created in the simulation
and how they are parameterized. Each agent requires at least a type and unique id.
Additional attributes might be required, depending on its type. Attributes can be a
single value, a list of values, an externally specified time series in CSV format, a
group of sub-attributes or even a list of grouped sub-attributes. The type of each
attribute is specified in the Schema section. The full list of attributes cannot be stated
in this document. Instead, please refer to the up-to-date pages at the AMIRIS-Wiki
https://gitlab.com/dlr-ve/esy/amiris/amiris/-/wikis/Classes/Classes. There, a
comprehensive list of all attributes and associated configuration options can be
found for all agent types.

The “Contracts”-section configures the interactions between the agents. Each
contract comprises a sender and receiver agent (identified by ID), a product type,
as well as an initial execution time and execution interval (in seconds). Usually,
changes to contracts are only required if agents are added to or deleted from the
configuration. For this, groups of agents are defined that allow to add and remove
agents conveniently with a change at a single point of the configuration. Please see
the AMIRIS-Wiki for a list of all available products per agent type. Similar to the
“Schema” section, “Contracts” are often extracted to separate files to keep the
scenario file tidied up. FAME-Io’s “!include” command can be used to load a
multitude of other YAML files. See the AMIRIS-Examples project
https://gitlab.com/dlr-ve/esy/amiris/examples for several examples of techniques to
keep the configuration files neat and organized.

Contract configuration for AMIRIS is not trivial, since almost all actions within
AMIRIS are controlled via contracts. Thus, one needs to know what actions create
which data, which input is required by what action and which agent can provide such
input. Therefore, instead of starting from scratch, please refer to the AMIRIS-
Examples project to see several working examples of agents and related contracts.

Once the configuration is completed, “FAME-Io”, a Python tool, is used to convert
configuration files into a single binary input file for AMIRIS. Please see the FAME-
Io documentation for further instructions on its installation, execution, and
command-line options.

Outputs
Each execution of AMIRIS creates a singular output file. Name and path to that

file can be controlled via the “fameSetup.yaml” (see next section). The binary output
file (protobuf) needs to be converted to human-readable form for interpretation.
FAME-Io provides a script to perform that task, which will create a folder with CSV
files: one file per agent type in the simulation. Figure 2 provides an example output
in that format.

Figure 2 Sample output of an agent of type “EnergyExchange” in CSV format

Each created output file features the columns “AgentId” and “TimeStep” at least.
The first column refers to the ID of the agent as specified in the “scenario.yaml” file
(see previous section). All outputs from agents of the same type are combined in
the same file, although sorted by “AgentId”. The next column defines the simulation
time at which the output was made by that agent. Please see
https://gitlab.com/fame-framework/wiki/-/wikis/TimeStamp for a detailed description
how FAME measures time. FAME-Io offers a function to convert time steps to time
stamps – when using Spine toolbox (see next section), this is done automatically.

Depending on the type of agent, additional columns exist. Typically, the header
row tells what value is depicted – including the unit in its name. Note that not all
output columns are used in each time step, necessarily. Figure 3 provides an
example for that case. There, outputs alternate between specifying offered and
awarded power, which occurs at different times within the simulation.

Figure 3 Sample output of an agent of type “ConventionalPlantOperator”

A full list of all outputs cannot be given here. Please refer to the AMIRIS-Wiki to
learn about all agent types and their outputs. You may also check the source code
and inspect what is actually done to create the output. Simply search for uses of the
“store(<ColumnName>, <Value>)” method in the particular class for the agent type
you are interested in.

How to run it
AMIRIS is based on FAME, the “open Framework for distributed Agent-based

Modelling of Energy systems” (see https://gitlab.com/fame-framework). Thus, it
requires a Java Development Kit (version 8 or above), a Python installation (version
3.7 or above) and Apache Maven. AMIRIS can be either run standalone or within
the Spine toolbox. Therein, all individual steps of input peparation, running and
output conversion are joined into a single workflow. An experimental workflow to run
AMIRIS within the Spine toolbox is availlable at
https://github.com/TradeRES/toolbox-amiris-demo. However, usability and
documentation is to be enhanced in the near future. Please see the AMIRIS
Readme file https://gitlab.com/dlr-ve/esy/amiris/amiris/-/blob/main/README.md for
a description on installing and running AMIRIS without Spine toolbox. The Spine
toolbox workflow requires a packaged Java ARchive (JAR) file of AMIRIS including
all dependencies. It can be easily obtained using Maven – please follow instructions
in the AMIRIS Readme.

Figure 4 Workflow executing AMIRIS in Spine toolbox

Figure 4 illustrates the workflow steps in the Spine toolbox: two files (1) need to
be provided to the workflow: the scenario definition and the fameSetup – both in
YAML-format. Please see the section Inputs for a description of the scenario file.
The workflow automatically calls FAME-Io (2) to translate the scenario into a single
binary input file in protobuf format to be used by AMIRIS. When AMIRIS is run (3),
the fameSetup.yaml file is read by FAME-Core. It defines file output parameters
(see Table 1). It is best not to change the provided file. After AMIRIS is run, the
result file is read (4), extracted into .csv files and imported (5) into the local SQL
database (6). To comply with the TradeRES naming standards and assigning of

time stamps to the results, these data are then transformed (7) and saved into
another database section (8).

Table 1 Parameters in fameSetup.yaml

Parameter Description
outputPath Relative or absolute path to create the output file at
outputFilePrefix Name of the output file
outputFileTimeStamp True on default; if true, a time stamp is prepended to the output

file
agentPackages List of Java package names that contain classes derived from

“Agent”
messagePackages List of Java package names that contain classes derived from

“DataItem”
portablePackages List of Java package names that contain classes derived from

“Portable”

Find out more
AMIRIS Home https://dlr-ve.gitlab.io/esy/amiris/home/

AMIRIS@Gitlab https://gitlab.com/dlr-ve/esy/amiris/amiris

AMIRIS@openMod https://forum.openmod.org/tag/amiris

FAME@Gitlab https://gitlab.com/fame-framework

FAME-Core@Maven https://mvnrepository.com/artifact/de.dlr.gitlab.fame/core

FAME-Io@PyPI https://pypi.org/project/fameio/

Nitsch, F. and Schimeczek, C. and Bertsch, V. (2021) “Back-testing the agent-based
model AMIRIS for the Austrian day-ahead electricity market”. Working paper. doi:
10.5281/zenodo.5726738

Nitsch, F. and Deissenroth-Uhrig, M. and Schimeczek, C. and Bertsch, V. (2021)
“Economic evaluation of battery storage systems bidding on day-ahead and automatic
frequency restoration reserves markets”. Applied Energy (298). Elsevier. doi:
10.1016/j.apenergy.2021.117267.

Laura Torralba-Díaz et al. (2020) “Identification of the Efficiency Gap by Coupling a
Fundamental Electricity Market Model and an Agent-Based Simulation Model”.
Energies. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en13153920.

Frey, U. and Klein, M. and Nienhaus, K. and Schimeczek, C. (2020) “Self-Reinforcing
Electricity Price Dynamics under the Variable Market Premium Scheme”. Energies.
Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en13205350.

Deissenroth, M. and Klein, M. and Nienhaus, K. and Reeg, M. (2017) “Assessing the
Plurality of Actors and Policy Interactions: Agent-Based Modelling of Renewable Energy
Market Integration”. Complexity, 2017, 7494313:1-7494313:24, doi:
10.1155/2017/7494313.

