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Executive Summary 

This report covers the implementation of temporal flexibility options in TradeRES’ 

agent-based electricity market simulations models. Within this project, the term 

“temporal flexibility option” was defined as an asset or measure supporting the 

power system to balance electric demand and supply and compensate for their 

stochastic fluctuations stemming from, e.g., weather or consumer behaviour by 

adjusting demand and/or supply as a function over time or by reducing their forecast 

uncertainty. Other reports from the same work package of TradeRES are published 

almost simultaneously, each focussing on another aspect of market model 

enhancements. These accompanying reports address sectoral flexibility, spatial 

flexibility, actor types, and modelling requirements for market designs. 

Flexibility options covered in this report were selected with regard to a 

predominantly temporal characteristic, a contribution to TradeRES’ assessment of 

market designs, and the feasibility to be implemented in at least one of the agent-

based models (ABM) during the project’s lifetime. The technical aspects of “Load 

shedding”, “Load shifting”, “Electricity storage”, and “Real-time pricing” were 

selected for implementation. In addition, the following new electricity market 

products were selected for implementation: “Rolling market clearing”, “Trading with 

shorter time units”, and “Variable market closure lead times”. 

This report features three ABM, namely AMIRIS, MASCEM and RESTrade. After a 

short introduction for each of those models in Chapter 3, existing and newly 

implemented temporal flexibility aspects are described in detail. This comprises the 

ability to “Trade with shorter time units”, which was available in all considered 

models before the start of the project. Representations of further temporal flexibility 

options like 

• Load shedding, 

• Electricity storage, 

• Rolling market clearing, 

• Real-time pricing, and 

• Variable market closure lead times 

were already available in some of the models. Those features were also introduced 

to some ABM of TradeRES not yet having those modelling capabilities. In addition, 

some existing implementations were enhanced during the course of the project. 

“Load shifting” was not implemented in any of the considered ABM models before 

the start of TradeRES and was now introduced to MASCEM and AMIRIS. 

Not all flexibility options are implemented in each model. Instead, each model 

focusses on a subset of options to maximise the project’s progress and distribute 

efforts across the different models. In this way, the project can best exploit the 

different capabilities of the individual models, and, due to the foreseen coupling of 

those models, can simultaneously provide the newly developed features and 

modelling enhancements to third parties.  
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1. Introduction 

TradeRES seeks to find market designs for a ~100% renewable energy sources 

electricity system. Such a system will be characterized by large fluctuations of 

generation from variable renewable energy sources (vRES), thus demanding for a 

high amount of flexibility and fast reactions of system elements to balance out 

these fluctuations, both in spatial and temporal terms [1, pp. 1-4, 2]. As the energy 

transition is progressing, the need for cross-sectoral flexibility also becomes 

obvious [3, p. 11491, 4, p. 1161, 5]. In this deliverable, we focus on the 

representation of temporal flexibility options in the electricity market simulation 

models. We refer to two aspects: a) technological solutions (e.g. storage systems) 

that can provide flexibility to electricity markets by shifting production or demand 

on the time axis, and b) changes in the design of markets or products that reduce 

the need for flexibility at the electricity markets (e.g. shorter gate closure lead 

times). 

In this report, we provide a short overview and distinction of the temporal flexibility 

options considered, and explain in detail how these are implemented in the agent-

based models (ABM) AMIRIS [6], MASCEM [7] and RESTrade [8]. Those models 

are designed to cover time-scales from hours to several years. The fourth ABM 

within the TradeRES project, EMLab-Generation [9, 10], takes a rather long-term 

perspective which covers several decades. It has a simple dispatch algorithm and 

uses a segmented load duration curve (20 segments) that allows it to have shorter 

run times. This approach, however, doesn’t allow modelling temporal flexible 

resources on time-scales of hours or days, as needed to balance out fluctuations. 

Thus, EMLab-Generation is not included in this report. 

This deliverable is accompanied by a series of other deliverables from TradeRES 

Work Package 4 “Development of Open-access Market Simulation Models and 

Tools”. All of these deliverables are to be published within a timeframe of a few 

months. Please refer to these deliverables to gain deeper insights on their specific 

topics: 

• Deliverable 4.2 [11] focusses on the implementation of sectoral flexibility 

within TradeRES models. 

• Deliverable 4.3 [12] describes spatial flexibility options and their 

implementation in TradeRES models. 

• Deliverable 4.4 [13] looks at new actor types in electricity market simulation 

models, starting with the given agent configurations of the ABMs. 

• Deliverable 4.5 [14] covers modelling requirements for new market designs 

and policy options that shall be studied within TradeRES. 

The remainder of this deliverable is structured as follows: Chapter 2 introduces 

flexibility options with a temporal aspect. It lays down which flexibility options are 

covered in this report, which ones have been covered in other WP4-related 
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reports, and which ones are not considered within the TradeRES project. Chapter 

3 describes implementations of temporal flexibility options within the models 

AMIRIS, MASCEM and RESTrade. Hereby, a distinction is made between the 

already implemented features that have been there before the start of TradeRES 

as well as new ones developed or planned to be developed within the course of 

the project. Readers interested in particular temporal flexibility options or 

implementations in one of TradeRES’ ABMs may jump right to the respective 

section. Chapter 4 concludes this deliverable by detailing limitations and providing 

an outlook on further developments and activities. 
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2. Overview on temporal flexibility options 

Many different temporal flexibility options in the context of electricity markets are 

discussed in the literature. Typically, they are employed to level out fluctuations 

from vRES (see e.g. [15, pp. 10-11] for a comprehensive overview). In the 

following, we first define the term of temporal flexibility in the context of this report 

(Section 2.1), and then provide an overview regarding the flexibility options we 

address (Section 0). Finally, in Section 2.3 we specify which aspects are 

addressed in the other reports of TradeRES Work Package 4. 

 

2.1 Definitions 

This report is part of the TradeRES Work Package 4 report series (see also 

Section 1). We define terms relating to flexibility options as specified in Table 1. 

Table 1: Terminology within TradeRES 

Term Explanation 

Flexibility option 

Asset or measure supporting the power system to balance electric 

demand and supply and compensate for their stochastic fluctuations 

stemming from, e.g., weather or consumer behaviour… 

Temporal flexibility 

option 

… by adjusting demand and or supply as function over time or by 

reducing their forecast uncertainty; 

Sectoral flexibility 

option 

… by coupling the power sector to other sectors, the power grid to 

other grids, or electricity to other energy carriers; 

Spatial flexibility 

option 
… by connecting electricity surplus areas to electricity deficit areas; 

 

2.2 Flexibility options covered in this report 

This report focusses on temporal flexibility options in wholesale and balancing 

markets. Other ancillary services are not considered here, but subject of 

TradeRES deliverable D3.3 [16]. Most of the flexibility options relate to a short 

timeframe of days to hours, or even shorter time intervals. However, some 

flexibility is also targeted at longer time scales such as seasonal storage in order 

to cover longer periods of low or no wind and sun (often referred to as 

“Dunkelflaute” [17]). Regarding this report, we consider spatial or network 

restrictions only with respect to the ones given by wholesale markets and bidding 

zone design as of today.  
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Some temporal flexibility options may simultaneously relate to sectoral or spatial 

flexibility. Although these aspects cannot always be clearly separated1, the 

examined flexibility options were categorised based on an agreement of members 

of the TradeRES consortium on what characteristic is most prevalent. 

A two staged process was employed in the project: First, existing implementations 

of temporal flexibility options in the models were identified. Second, further options 

were selected that fulfil the following three criteria: 

1. The flexibility option has a predominantly temporal characteristic, 

2. contributes to TradeRES’ assessment of market designs, 

3. and can be implemented in at least one of the ABMs during the project. 

The selected options are listed in Table 2. 

Table 2: Temporal flexibility options covered in this report with a corresponding brief description as 

well as the model(s) to feature the flexibility option and whether this option was already included in 

the model (Stage 1) or was newly implemented (Stage 2) 

Flexibility option Brief description Model (Stage) 

Load shedding Curtailing electrical loads when exceeding the value of lost 

load 

AMIRIS (1, 2) 

MASCEM (2) 

Electricity storage Extraction of energy from the grid or another physical unit, 

storing it (chemically or otherwise) and feeding it back at a 

later time 

AMIRIS (1) 

MASCEM (2) 

Rolling market 

clearing 
Not clearing spot and balancing markets once for all hours 

of the next day, but holding regular auctions based on a 

rolling time window, e.g., each one, four or six hours 

AMIRIS (1) 

RESTrade (2) 

Trade shorter 

time units 
Not trading hourly products at spot and balancing markets, 

but shorter products, e.g., 15 mins or 5 mins 

AMIRIS (1) 

MASCEM (1) 

RESTrade (1) 

Real-time pricing Final customer prices reflect the dynamics of wholesale 

markets, e.g., day-ahead. 

AMIRIS (1) 

MASCEM (2) 

Load shifting Shifting electrical loads between different hours while 

keeping the overall energy demand of an actor unaffected 
AMIRIS (2) 

MASCEM (2) 

Variable market 

closure lead 

times 

Shorter lead times between market closure and delivery, 

allowing to benefit from better forecast qualities 
AMIRIS (2) 

MASCEM (1) 

RESTrade (2) 

 

 
1 E.g., electrical heat pumps couple the power and heat sectors (sectoral flexibility), but can also be used to 

for demand response applications (temporal flexibility). Thus, if electrical heat pumps were to be considered 

via a generic load-shifting model implementation, this would be covered in this report. In contrast, if electrical 

heat pumps were modelled as a power-to-heat conversion device the implementation would be discussed in 

Deliverable 4.2. 
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2.3 Further flexibility options not covered 

As stated in the previous section, flexibility options which do not predominantly 

relate to temporal flexibility are not covered within this report. Please refer to 

Deliverable D4.2 [11] to learn about sectoral flexibility within TradeRES models, 

especially regarding interactions with the heat sector (power-to-heat), interactions 

with the transport sector (charging of electric vehicles), interactions with industrial 

processes, as well as with other energy carriers (via power-to-gas or power-to-

liquids). Since there is yet limited coverage for sector coupling in the ABMs, the 

optimization models Backbone [18, 19] and COMPETES [20] cover this area of 

research within TradeRES. Spatial flexibility regarding, e.g., market splitting, 

dynamic line rating of interconnection power lines, cross-border markets, or nodal 

pricing is covered in report D4.3 [12]. 
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3. Modelling capabilities and enhancements 

Section 3.1 gives a very short introduction to the ABMs highlighted in this report, 

i.e., AMIRIS, MASCEM & RESTrade. It also provides the interested reader with 

further literature on these models. Section 3.2 covers existing implementations of 

temporal flexibility options of those models. Section 3.3 then describes in detail 

which model features regarding temporal flexibility and their data sets were newly 

implemented or are planned to be implemented within TradeRES. 

3.1 Model descriptions 

The agent-based simulation models AMIRIS, MASCEM and RESTrade are part of 

the TradeRES project. ABMs allow studying complex systems by representing 

them as set of interacting autonomous entities. This enables assessing how 

system properties emerge from the behaviour of those entities and their 

interactions. In reverse, the approach also allows investigating how a system 

affects its individual entities. It is thus a widely used approach applied to various 

areas of research, which is, however, still striving for standardisation (see, e.g., 

[21]). The agent-based nature of the TradeRES models makes them an ideal 

choice to analyse changes in policies and market designs and their corresponding 

impacts on the electricity markets. The following subsections give a very short 

overview of each of these model’s basic implementations, scope and capabilities. 

3.1.1. AMIRIS 

The Agent-based Market model for the Investigation of Renewable and Integrated 

energy Systems (AMIRIS) [6] was created at the German Aerospace Center in 

2008 and has been enhanced and improved ever since. It represents an 

innovative approach to analyse and assess energy policy instruments and 

mechanisms for the market integration of renewable energies and flexibility 

options. For the design of such policy instruments and frameworks, it is necessary 

to consider the behaviour of actors under uncertainty and the resulting complex 

interdependencies [22, 23]. AMIRIS reflects these market dynamics and 

interactions for the analyses of various designs of policy frameworks [24, 25]. ABM 

offer an appropriate approach to this task, since modelled actors with their 

perceptions and actions are at the heart of this modelling technique. 

Figure 1 depicts the agents modelled in AMIRIS as well as their interactions. 

Agents cover power plant operators, traders, marketers of flexibility, marketplaces, 

information services and regulators. These agents typically do not represent a 

single company or household but archetypes specialising in specific tasks and 

aspects. Thus, in order to represent functional energy systems, those agents are 

in constant exchange of data interacting with contracted partners covering other 

tasks. Such interactions are information flows, money transfers, and energy flows. 
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Due to this specialisation, power plant operators make production capacities 

available to electricity traders, but do not trade on the markets themselves. This 

task is covered by supply trader agents who try to maximise their own profitability, 

based on the forecasted available power from associated power plants. 

Marketplaces also have an agent representation. However, they do not pursue any 

objectives themselves but act as trading platforms whose mechanisms (e.g. 

regulations & market clearing) they implement. Demand trader agents purchase 

electricity and coordinate price- and time-dependent electricity demands. Agents 

providing flexibility try to maximise their profits through arbitrage (storage systems) 

or coordination of flexible loads (e.g. heat pumps or electric vehicles). 

 

Figure 1: Basic structure of the AMIRIS model 

An open-source publication of AMIRIS is currently being prepared to enhance 

scientific transparency and foster the exchange of models and ideas within the 

scientific community. Previous development steps of AMIRIS lead to the already 

published open Framework for distributed Agent-based Modelling of Energy 
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systems (FAME)2. This software allows a rapid development of ABMs, reduces 

development overhead, provides a convenient model configuration tool and 

facilitates high-speed model execution using parallelisation. FAME models can 

also be deployed to high-performance computing systems with ease. Typical 

AMIRIS model configurations (one year at an hourly resolution) take less than a 

minute of computation time on a desktop personal computer. Due to its agent-

based and modular nature, AMIRIS can be enhanced or modified quite easily. 

3.1.2. MASCEM 

MASCEM or Multi-Agent System for Competitive Electricity Markets is an 

electricity market simulator that was firstly introduced to the scientific community in 

[7]. This modelling tool allows the study of restructured electricity markets with the 

potential to be used by entities of very different natures and scopes of study as it is 

able to interact and cooperate with other multi-agent systems through the use of 

ontologies that manage agents’ communications [26]. 

MASCEM was developed with the purpose of studying the complex and 

restructured electricity markets. It models the main involved entities and their 

interactions, collects data in the medium and long term to support the entities’ 

decisions based on their characteristics and objectives and thus allows a better 

understanding of the regulators and market players’ behaviour, the development of 

trade relations and the mechanisms of these markets. The simulator uses game 

theory, learning techniques, scenario analysis and optimization techniques for 

modelling and supporting market actors in their decisions. 

Modelled agents correspond to various entities in the electricity market, such as: 

Producers, Buyers, Brokers, Virtual Power Players, Market Operators and System 

Operators. The user defines the market mechanisms to simulate, the number of 

agents as well as each agent’s strategy and characteristics. 

The model uses JADE3 (Java Agent Development Framework) framework, which 

ensures a standard of interoperability between MASCEM and other multi-agent 

systems (i.e. models or components). JADE accomplishes this via a 

comprehensive set of services that enable communication between agents, 

carried out through the exchange of messages. These services include, e.g., the 

possibility to locate agents, to register their role and capabilities, or to support the 

translation and communication between different agents. 

 

 

2 https://gitlab.com/fame-framework 

3 https://jade.tilab.com/  

https://gitlab.com/fame-framework
https://jade.tilab.com/
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The MASCEM simulator is additionally integrated with ALBidS (Adaptive Learning 

for strategic Bidding System) [27], a component for multi-agent systems equipped 

with adaptive learning abilities, which endows agents with capabilities to analyse 

negotiation contexts, such as the day of the week, the period, the particular market 

in which agents are negotiating, the economic situation and weather conditions. 

ALBidS thus allows market agents to automatically adapt their strategic behaviour 

according to their current situation. 

3.1.3. RESTrade 

The RESTrade simulator comprises i) models of traditional dispatchable and 

VRES power plants, ii) reserve markets and iii) Dynamic Line Rating (DyLR) of 

overhead power lines [28]. It supports the participation of traditional dispatchable 

power plants and VRES in the system balance, i.e., automatic / manual frequency 

restoration reserve (aFRR / mFRR) markets, according to their technical 

capabilities [29]. The aFRR requirements are computed considering the balancing 

guidelines of the ENTSO-E for the case of each country [8, 30]. Furthermore, 

RESTrade uses the marginal pricing theory to define the clearing-prices of these 

markets. 

In RESTrade, the transmission system operator (TSO) is modelled as the agent 

with the responsibility to compute the reserve requirements of the balancing 

markets. It is equipped with the marginal pricing algorithms to clear each market, 

scheduling the dispatch of power plants based on the programmed agreements. In 

the case of cross-border congestion situations, which can lead to market splitting 

or redispatch, it also has the responsibility to compute overhead power lines 

capacity from long to short-run markets using a DyLR approach. Traditionally, 

TSOs compute the cross-border capacity using a “steady-state” seasonal line 

rating (SLR) of the lines. By using SLR, TSOs use conservative values of the 

incident wind and irradiance on the overhead lines, which normally underestimate 

the line capacity. The ambient temperatures can be fixed or vary seasonally and/or 

spatially accordingly to historical references. A DyLR methodology enables TSOs 

to predict and compute the maximum (temporal) capacity of the overhead lines 

without compromising their security. The DyLR calculation is computationally 

heavy, so it should be used only to avoid congestions. The DyLR methodology 

was implemented in Matlab. It enables TSOs to provide the transmission capacity 

of overhead power lines to the market according to the CIGRÉ methodology [31], 

which comprises a thermodynamic model of overhead power lines. In case of grid 

congestions in the interconnection lines, the use of a DyLR methodology enables 

TSOs to compute the interconnection capacities between different market zones, 

potentially avoiding those congestions without compromising the security of the 

lines [28]. 
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3.2 Existing implementations related to temporal flexibility 

The following sections describe the existing implementations of temporal flexibility 

options in the aforementioned ABMs of TradeRES. Since these are no new 

developments, the descriptions are kept concise. References to the original work 

enable further studies for the interested reader. 

3.2.1. AMIRIS 

Several flexibility options with a temporal aspect were already available in AMIRIS 

before the start of TradeRES, namely “Load shedding”, “Electricity Storage”, 

“Rolling market clearing”, “Trading with shorter time units”, and “Real-time pricing”. 

All of these AMIRIS features are explained in the following subsections. 

3.2.1.1. Load shedding 

In AMIRIS, electricity prices are typically determined by intersecting a very 

granular supply-side merit order with an inflexible demand. For this demand, a 

price-independent offer at the technical price limit of the day-ahead market 

(currently 3,000 €/MWh [32, p. 5] is placed). See Figure 2(a) for this base case. 

However, load shedding can be considered by using a more granular demand 

curve. To do so, the overall electrical power demand is divided into distinct 

segments, each with individual power demand and value of lost load (VOLL) (see 

Figure 2(b)). In this way, an arbitrary level of granularity can also be achieved for 

the demand curve. 

 
Figure 2: (a) Original inflexible demand implementation; (b) flexible structure of the demand curve 

 

Each demand segment is associated with exogenously determined load patterns 

of consumers or consumer groups. In this way, the share of the individual 

segments from the whole electricity demand may vary for each hour. The assigned 

VOLL indicates the willingness to pay corresponding to the consumers of that 

demand segment. In general, demand segments can be flexibly determined. In 

[33], flexible demand options have been grouped within demand sectors using a k-

means clustering approach with the interference time (time for a shift in either 

upwards or downwards direction), the shift time and cost values (i.e. investment 

expenses, variable and fixed costs) as clustering inputs parameters. The 
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clustering resulted in two industry clusters (one mixed with processes and 

applications, one processes only), one cluster of household appliances, one of 

trade, commerce and services (TCS) applications and one mixed cluster for 

households and TCS containing heating and cooling appliances which is used as 

a default. This parameterization might change according to new scientific insights 

and data availability. 

If power prices exceed the VOLL the demand segment is curtailed, i.e. its load 

shedding potential is activated to the extent needed for clearing the market. 

Similar to the base case with no load-shedding, a remaining inflexible demand 

time series is used to consider demand that must not be shed. The sum of all 

sheddable demand segments plus the remaining inflexible demand equals the 

overall demand for every hour of the simulation. 

A basic load shedding mechanism was implemented to AMIRIS before the start of 

TradeRES. Nevertheless, several enhancements were made during the project 

enabling more extensive analyses regarding micro-economic potentials of load 

shedding. These enhancements include a comprehensive literature research to 

model load shedding segments building on [34] as well as the needed data 

processing routines. The literature research revealed high VOLL values for 

industrial consumers reflecting the opportunity costs from lost production (e.g. for 

primary aluminium electrolysis or electric arc furnaces). Especially for commercial 

consumers, however, only few data sets were available. Also, within TradeRES 

the AMIRIS model configuration was enhanced by attributing one demand trading 

agent with all load shedding segments. This removes the need to have one 

demand agent per modelled segment and reduces configurational and 

computational overhead. 

3.2.1.2. Electricity Storage 

AMIRIS features three different storage dispatch strategies: 

• [MAX] Strategy to maximise profits via arbitrage trades on the day-ahead 

market: A single agent trades and determines the operation of its storage. 

• [MULTI] Robust profit-oriented strategy for arbitrage trades on the 

exchange: Multiple agents trade competing with each other. Each agent 

has its own assigned storage. 

• [MIN] Strategy for minimising system costs: A single agent trades and 

determines the operation of its storage. 

Using the MAX strategy, the configured storage capacity is assigned to an agent 

that applies a strategy to maximise its profit via arbitrages on the day-ahead 

market. It considers the influence of its actions on the resulting price for electricity: 

if, for example, a significant amount of energy is stored, this increases demand 

and thus the price. Conversely, the price decreases when energy is sold from the 

storage. By considering these price sensitivities, the agent will take care to 

influence prices only as far as it serves its purpose to maximise the profit. Since 

economic incentives determine the operation of the storage facility, technical 
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potentials may not be fully exploited. Available storage capacities may therefore 

not be considered in certain hours due to economic reasons. 

 
Figure 3: Schematic representation of the dynamic programming algorithm; Black steps symbolise 
the different available storage levels at time t and the following time step t+1. Red arrows indicate 

the possible storage level changes (transitions). 

The MAX strategy is implemented by means of a dynamic programming algorithm 

(see Figure 3) [35, 36]. For this purpose, the possible energy levels are first 

discretised, i.e. divided into an integer number of level steps. Subsequently, the 

expenses or revenues that arise when proceeding to a state j at the next time step 

t+1 are calculated for each possible initial state i at time t. The revenues and 

expenditures of times before t are also considered. Thus, an optimal sequence of 

storage level steps can be determined which maximises the storage operator’s 

profits. 

The MULTI strategy, like the MAX strategy, aims to maximise profits through 

arbitrage on the day-ahead market. In contrast to the MAX strategy, however, 

several agents may trade simultaneously, each controlling an individual storage 

facility on the market. The representation of this simultaneous trading of competing 

agents requires an alternative algorithm. It must be ensured that the agents 

pursue a strategy that allows them to maximise their profits without knowing the 

bids of the other agents. Therefore, the median of the forecasted electricity prices 

(see Figure 4) is calculated for the forecast time interval. 

Based on this median electricity price during the forecast period, a minimum 

margin is set to account for expected charging and discharging losses and price 

forecast uncertainties. The median of the forecasted electricity prices is a robust 

measure with respect to uncertainties and errors of the price forecast. Thus, this 

strategy performs reasonably well when confronted with errors in the predicted 

prices. To determine the charging and discharging power bids the expected 

difference of the individual forecasted price to the price median is used. This 

approach neither considers the change in price due to the own charging behaviour 

nor the charging behaviour of other storage agents. Therefore, a continuous 

(hourly) adaptation of the scheduling is necessary. 
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Figure 4: Schematic representation of the median-based storage strategy 

The strategy MIN is implemented to compare the results of the other two 

strategies with a system-optimal dispatch of the storage. Its approach is similar to 

the MAX strategy, with only one major difference: The MIN strategy seeks to 

minimise the sum of system costs, i.e. the total costs for electricity generation. In 

this case, the storage operator agent controls the entire storage capacity and has 

perfect knowledge of the entire system. The agent is able to calculate the total 

costs of electricity generation for each hour, considering the influence of the 

storage dispatch. This strategy does not strictly follow the actual agent-based 

approach, as here the agent does not seek its own economic advantage, but 

optimises the overall system and has perfect foresight of all bids to be placed at 

the energy exchange. 
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3.2.1.3. Rolling market clearing 

 

Figure 5: Schematic depiction of gate closure and delivery times for European day-ahead markets; 

a) current implementation, b) rolling market clearing with 6 daily intervals, c) implementation in 

AMIRIS 

Currently, day-ahead markets are cleared for a whole day (24 individual hours) on 

the previous day between morning and around noon, depending on the bidding 

zone. Thus, the time delta between gate closure and actual delivery is not 

constant but varies, e.g., between 12 and 36 hours (see Figure 5a)). Once the 

market is closed bids can no longer be changed to include updated forecasts for 

later times. As a consequence, the uncertainty of prepared bids with respect to 

their corresponding power generation or demand is not constant but varies 

throughout the considered day (see also Section 3.3.1.2) – with a tendency to 

increase towards future hours. Rolling market clearing allows integrating forecast 

updates in bids for later hours of the day. Thus, it is one possibility to level-out and 

reduce bidding uncertainties on the day-ahead market. 

Different implementations of rolling market clearing are possible, as can be seen in 

Figure 5b) by means of an example: There, six separate market clearings and 

corresponding gate closures Tn are depicted for each day, with a constant gate 

closure lead time of 12 hours. Each clearing, therefore, covers four-hour time 

intervals. This rolling horizon market clearing approach can be varied with respect 

to gate closure lead times and number of daily clearing intervals. 
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In AMIRIS, a gate closure lead time of zero with 24 daily market clearings is used 

by default (see Figure 5c)). Thus, delivery begins immediately after market 

clearing. The time unit is not fixed, so other market clearing time segment 

durations are also possible (see the following Section 3.2.1.4). The impact of 

different market closure lead times can also be considered using the method 

described in Section 3.3.1.2. 

3.2.1.4. Trade shorter time units 

At the electricity spot market EPEX, power is currently traded in hourly segments 

on the day-ahead market for all market zones. Intraday markets offer shorter 

product time units of 30 minutes or 15 minutes. AMIRIS, however, does not 

comprise intraday markets. Thus, to be able to model shorter time units also in 

AMIRIS, its agent interactions are not tightly bound to a predefined time schedule. 

Instead, AMIRIS follows the logic of the underlying FAME4 framework, where each 

agent is programmed to react to contract signals. In this context, “contract” refers 

to a regular delivery of one agent to another agent. Deliveries can be anything, 

e.g., information, energy, or money. The time intervals of contract execution are 

defined in the configuration files, i.e. they are not hard-coded in the simulation. All 

interactions / communications of AMIRIS agents are defined via such contracts. 

Since contracts can be freely configured outside of the simulation’s code the 

interaction time intervals of AMIRIS agents can be freely adjusted. Any requested 

time unit for electricity products (larger than 30s) can be modelled. On the down 

side, agent input data is not automatically adjusted to timing changes. Thus, the 

time series fed to the agents need to be adapted manually since AMIRIS has no 

implicit data conversion routine that splits up, e.g., hourly data into shorter time 

slices. 

We give a short example of how this feature can impact results, e.g., by changing 

the time resolution of an AMIRIS simulation from an hourly to a 15-minute time 

interval. For this purpose, all input time series (e.g. demand or vRES potentials) 

are scaled to that time resolution as well. We add additional fluctuations to the 

demand time series to demonstrate the impact of short-term variations on the 

electricity market. Please bear in mind that this is not a scientific evaluation of 

short-term effects but merely a demonstration of model capabilities. 

Figure 6 shows an excerpt of a German sample for demand data time series 

scaled to 15-minute segments. As the vertical axis shows quarter-hourly energy 

demand and not power, black crosses indicate the hourly demand divided by four. 

Red dots show a smooth 15-minute interpolation of the hourly data such that the 

sum in each hour matches that of the hourly data set. Blue dashes represent the 

 

 

4 https://gitlab.com/fame-framework 

https://gitlab.com/fame-framework
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same interpolation with an added random fluctuation. The latter demand also 

retains the hourly sums of the demand data. 

 

Figure 6: German energy demand over 24 hours within time segments of 15 minutes each; black 

crosses represent a scaled-down hourly energy demand, red dots indicate a smooth interpolation 

of the same data, blue dashed feature additional random fluctuations. 

For the other time series, e.g., renewable feed-in potentials were smoothly 

interpolated without added fluctuations, but also have their hourly sums to match 

the corresponding original hourly values. This approach, of course, is not matching 

the real-world data where short-term fluctuations do occur for those time series as 

well. However, we ignored these fluctuations for the sake of simplicity. The result 

of applying these data to the electricity market in AMIRIS is shown in Figure 7. 

Here, the smooth demand interpolation (red dots) does not significantly change 

the electricity prices compared to the hourly average price (black crosses). The 

added random fluctuations on the demand, however, can cause strong price 

variations in the individual 15-minute time segments (blue dashes). Due to the 

non-linearity of the merit order and variations of the feed-in potentials the impact of 

changes in demand on corresponding prices can vary significantly. For example, 

in the first simulation hour, the demand deviates up to 1.5 GWh per 15 minutes 

from the hourly average causing a corresponding price reduction of about 

5 €/MWh. At noon, however, an increase of the demand by 1.1 GWh per 

15 minutes, again compared to the hourly average, causes a price jump of more 

than 13 €/MWh. This illustrates that finer-grained market products may have a 

significant impact on the revenues of market participants and electricity prices. 
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Figure 7: Electricity price over 24 hours within time segments of 15 minutes each; market and line 
styles corresponding to those used in Figure 6 

3.2.1.5. Real-time pricing 

Real-time pricing means providing final customers with prices that reflect the 

dynamics from wholesale markets [37, p. 15]. In AMIRIS, this is achieved by a 

“retailer” agent who manages end user tariff design. These include a flexible 

component based on the hourly wholesale market price forecast for the next day. 

Additional static price components are included, such as levies, taxes, or network 

charges. These static components, however, may outweigh the dynamic price 

signal and thus hamper the consumers’ flexible response to real-time pricing. 

Therefore, currently static price components may also be designed in a dynamic 

way to strengthen the consumers’ response to price signals. 

Since in AMIRIS the retailing agent does not know the exact future price, a 

forecasted price is used. This forecast is obtained from an agent specialising in 

that task. The forecasted prices are then communicated to agents representing 

end-users, e.g., consumers or prosumers. An option is included to constrain the 

maximal and minimal price for the end-users in order to limit the price risks for 

both end-user and retailer agents. The retailer agent thus needs to apply markups 

on the end-user prices to consider potential losses from these risk transfer 

limitations. 

It is envisaged to extend and generalize the representation of levies, taxes and 

other fees in AMIRIS. Capacity-related network charges, which might impact 

consumer behaviour as well, are also not considered yet. 
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3.2.2. MASCEM 

The main types of negotiations supported by MASCEM are: day-ahead and 

intraday pool (symmetric or asymmetric, with or without complex conditions) 

markets, bilateral contracts and forward markets [26]. In MASCEM, it is possible to 

clear the market at any specified time interval; usually in periods of one hour, half-

hour, 15 minutes or 5 minutes; but not excluding any other periodicity that may be 

defined. MASCEM market models can also be executed for any horizon before 

delivery, usually day-ahead, hour-ahead, 15 and 5 minutes-ahead, but any other 

horizons can be simulated. By selecting a combination of these market models, it 

is also possible to perform hybrid simulations. MASCEM supports the simulation of 

three of the main European electricity markets: MIBEL, EPEX and Nord Pool, 

reflecting the respective market rules and products. The main temporal flexibility 

capabilities present in MASCEM’s current version relate to the possibility of 

defining Flexible Hourly Offers, an offer type associated to the Nord Pool market 

[38]. 

In summary, complementarily to the basis offers per negotiation period, flexible 

hourly orders give the opportunity to present sale offers only (purchases are not 

permitted), without indicating a specific period. Thus, the associated volumes can 

be transacted in any period of the day, depending on the offer price, and on the 

necessities of the market for each period. 

 
Figure 8: Symmetrical Pool, adapted from [38] 

MASCEM simulates the Elspot – Nord Pool’s day-ahead market in the following 

way: After the closing of the bidding, the market operator performs the matching 

process of the participants' offers. Since Elspot is a symmetric market, where there 

are buying and selling offers, the Elspot market uses linear interpolation as a 

means to obtain aggregated curves of selling and buying offers. Figure 8 illustrates 

the matching mechanism of the symmetric market. 

The intersection point determines the market price and the volume of electricity for 

each period. After the market auction is finished, if congestion occurs in a 

connection point between areas, a market split takes place. Please refer to the 
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congestion management model presented in [14] for details on how congestion is 

modelled through a service developed by TradeRES. The market split divides the 

market into two independent ones along congested market connection points. 

Once the division is performed, the market mechanism is run again for each area 

separately, and in case of congestion occurring once more in other points of the 

electrical grid, the market split process divides the network into more areas, 

following the same principle as before, repeating the entire process until there are 

no more congestion problems. 

The sale offers with prices below the market price and the purchase offers with 

prices above the market price will be accepted in the market, and the price at 

which energy is traded is equal for all accepted offers (uniform market price for 

each period). For offers of flexible type, trading occurs in the same way, and these 

deals will apply in the periods when its use will maximize the market social 

welfare. When there are several offers of this kind, they will be ordered by price, 

with the lowest prices to be more likely to be accepted (always depending on the 

market price for each period). 

 
Figure 9: Market results for a test player using flexible orders, adapted from [38] 

As an example, Figure 9 presents the results of an illustrative seller agent that, in 

addition to the single hourly orders, also submits three flexible hourly orders. 

These flexible hourly orders (available only to seller agents) allow the players to 

specify a fixed price and volume. The hour is not specified. The order will be 

accepted in the hour that optimizes the overall socioeconomic welfare of the 

market. A maximum of five flexible hourly orders is available per agent during a 

market session. In this scenario, three orders were submitted with the volume of 

2000 MWh each, all three at the price of 40 €/MWh. 
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It is possible to observe from the chart of Figure 9 that during the first nine market 

periods (hours) none of the orders was accepted in spite of the bid price being 

below the established market price, since accepting the flexible orders in any of 

these periods would not maximize the market’s social welfare. The orange bars 

indicate a total of 6000 MWh of unsold energy during these periods (referring to 

the total of the three flexible offers, of 2000 MWh each). The three submitted 

flexible hourly orders were accepted in the 10th, 11th and 15th periods. In these 

three periods, the total amount of energy of the order was sold. As can be seen by 

the graph of Figure 9, since the first flexible offer is accepted in period 10, only 

4000 MWh remain to be negotiated in the 11th period. From these, 2000 MWh are 

accepted, and the remaining 2000 MWh, referring to the third and final flexible 

offer are negotiated in the following periods, being finally accepted in the 15th 

period. As mentioned before, the condition for the acceptance of each (or all) 

flexible offer is not only the proposed bid price, but also the maximization of the 

overall socioeconomic welfare of the market session, from the market operator’s 

perspective. The calculation of the social welfare comprises several factors, such 

as the difference between the submitted sale / purchase bid prices and the actual 

market price, as well as the difference between the total demand and supply 

placed in the market. During these specific periods there is a peak of demand 

when compared to the available demand, hence these flexible sale orders are 

allocated in a way that the balance between demand and supply can be increased, 

while contributing to a slight decrease in the market price. The blue line in the 

chart of Figure 9 refers to the bid price referring to the inflexible power. As one can 

see, the blue line (sale bid prices) is always below the market price (red line), 

hence all inflexible power is sold during all periods of the considered day (dark 

green bars). 

3.2.3. RESTrade 

In contrast to actual market regulations, RESTrade already allows trading of 

shorter time units at balancing markets (BMs), 15 minutes instead of the traditional 

60 minutes as indicated by the EU regulation on the internal market of electricity 

[39]. The stochastic behaviour of vRES makes BMs more unpredictable, especially 

for long time horizons. So, markets with a shorter time unit may be beneficial to 

vRES producers, by enabling them to reduce the level of uncertainty, since a 

higher level of time-granularity enables to reflect better the VRE variability, 

especially during extreme events [40]. In this sense, market products with shorter 

time units can reduce potential imbalances caused by vRES and, at the same 

time, improve the marketing capabilities for vRES at BM, thereby further reducing 

overall system imbalances. 

When market players are not complying with their programmed schedule, 

deviations occur. Typically, vRES and consumers are the main sources of 

deviations. vRES have the technical capability to surpass some of their deviations, 

but economically might be more favourable to pay imbalance prices due to 



Page 21 of 50 

 

deviations than to curtail power [41, 42]. Keep in mind, that if curtailed, in contrast 

to conventional power plants, vRES do not save fuel costs but loose feed-in based 

remuneration payments. However, the penalties to players that do not comply with 

the BMs schedule can be significantly higher than the imbalance prices charged 

for other market deviations [8]. So, vRES can make bids in BMs, but they will have 

to respond to operational set-points requested by the TSO, even if not optimal 

concerning their primary resource. Then, vRES may need to reduce output below 

the potential production, curtailing power. Against this background, vRES should 

verify if it is economically more advantageous to participate in BMs, potentially 

curtailing power, or to pay penalties because of deviations. If they use their 

expected deviations from programmed schedules to participate in BMs vRES can 

get a higher remuneration if this leads to small amounts of curtailments, otherwise 

it may be preferable to pay penalties, depending on the BMs and imbalances 

prices [8]. In reality, deviations from programmed schedules may also be 

compensated for via intra-day trades as an alternative to paying imbalance prices. 

However, intra-day markets also close before real-time operation, so, vRES will 

always deviate from programmed schedules, which technically can be surpassed 

by vRES participation on BMs and complying with operational set points. 

vRES should only make bids to BMs if they have extra power compared to their 

programmed schedule considering all trades: At the mFRR market, extra power in 

upwards or downwards direction can be offered, whereas at the aFRR market only 

upward extra power should be offered. To avoid economically infeasible 

curtailment, vRES may bid either the lowest 15-minute extra power, for the case of 

upward deviations, or a higher deviation for the mFRR market only, see Figure 10. 

Considering an hourly aFRR or mFRR market, during the situation described in 

Figure 10(a), it is not possible for the vRES producer to participate in the aFRR 

capacity market or even on the upward mFRR energy market, because it cannot 

comply with a stable (operational set-point) upward dispatch that may be required 

by the TSO. In this case, it should only participate in the downward mFRR market 

considering a bid of 7.1 MW, but it will have to do several curtailments from hour 

02:15 to hour 03:00. If the vRES producer bids a value above 7.1 MW, it will need 

to curtail more power and if it participates in the upward aFRR markets it cannot 

comply with the programming schedule, compromising the security of the power 

system and paying high penalties because of that. So, operationally and 

economically, it should only bid a maximum of 7.1 MW at the downward mFRR 

market. 
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(a) (b) (c) 

Figure 10: 15-min deviations from the programming schedule for a vRES producer: (a) not in the 

same direction, (b) stable up (blue bars) power (the lower green power defines the bid to aFRR and 

mFRR markets) and (c) stable down (red bars) power (the higher deviation defines the bid to 

mFRR market) [8] 

Analysing Figure 10(b), it is possible to verify that the vRES producer should make 

bids to the upward mFRR market considering a maximum of 99.9 MW. If it bids a 

higher amount it cannot comply with the programming schedule, compromising the 

security of the system and paying high penalties. Considering the situation in 

Figure 10(c), the vRES producer should only make a bid for the downward mFRR 

market of 67.2 MW to avoid several curtailments. If it were to bid 108 MW, it could 

be requested to provide that amount of downward power during the period from 

12:45 to 13:00 and would have to curtail more than 40 MW of power, which is 

economically not efficient. vRES can also participate in the aFRR market if there is 

a separate procurement for upward and downward capacity. Otherwise, it only can 

participate in the case of Figure 10(b) by bidding a capacity between -99.9 MW 

and 99.9 MW, which can lead to several curtailments in the case of being 

requested for providing downward energy. 

Considering a 15-minute mFRR market, vRES producers do not need to address 

such issues, since their production variability decreases with a reduction of the 

market time unit, increasing their potential to support BMs. The 15-min deviations 

define the bids to the 15-min mFRR market and for the aFRR market in case of a 

separate procurement between upwards and downward capacity. The use of a 

time unit of 15 minutes can contribute to a high reduction in the vRES 

curtailments, deviations and overall balancing costs. A case study of the 

Portuguese balancing markets concludes that changing the time unit of the mFRR 

market to 15 minutes and allowing the participation of vRES, can contribute to a 

reduction of the energy deviations by 14.4%, reducing the balancing costs by 16% 

[8]. 

3.3 Model enhancements within TradeRES 

The upcoming sections describe in detail new implementations of temporal 

flexibility options within TradeRES ABMs. Therefore, context and approach are 

given for each implementation, capabilities and restrictions are described and, if 

necessary, data requirements are specified. 
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3.3.1. AMIRIS 

AMIRIS features two new implementations for temporal flexibility options, i.e., load 

shifting and variable market closure times. These are described in the following 

subsections. 

3.3.1.1. Load shifting 

AMIRIS uses a modelling approach for load shifting that builds upon the existing 

storage representation (see Section 3.2.1.2). Similar to that, the actual 

representation of the physical asset is separated from the strategy-building to 

market its capacities. In the following, the representation of a portfolio eligible for 

load shifting and its basic planning algorithm are described. Building on that, 

variations of that algorithm are explained. The variations refer to different 

marketing strategies for the associated load shifting portfolio. 

- Planning Algorithm 

The intertemporal decisions of load shifting are modelled using discretized load 

shift states and a dynamic programming approach to foster fast numeric solutions. 

Load shift states 𝑍 = {𝑡s, 𝑒} are hereby defined to be a tuple of a shift time 𝑡s and a 

discrete energy level 𝑒. The shift time represents the time duration that the load 

has been unbalanced. The minimum and maximum energy levels 𝑒min and 𝑒max 

define the bounds of the load shifting state grid. The state grid spans 

symmetrically around the balanced energy level 𝑒0, i.e., the one that represents 

neither advancement nor delay of consumption. Energy levels below 𝑒0 represent 

consumption delayed in time, whereas energy levels above 𝑒0 indicate 

consumption advanced in time. 

Regarding the shift time 𝑡s, the following rules are employed: 

• If the energy level reaches 𝑒0 the shift time is set to 0. 

• The shift time is increased by one for each time step in which the load 

shifting portfolio is unbalanced. 

• If there is a change of the sign for the energy balance (by changing from 

load advancement to delay or vice versa) the shift time is reset to 1. 

A maximum shift time exists after which the portfolio needs to be in a balanced 

state again. Besides accounting for the energy and shift time limits that define the 

set of allowed states 𝑍, it has to be ensured that transitions from one load shift 

state to another do not violate power limits. The allowed difference in energy levels 

corresponds to the allowed maximum power. In upwards direction the power is 

constrained by the maximum additional load that can be taken by the agent, 

whereas in downwards direction the maximum load reduction is specified. Maximal 

shift in both upwards and downwards direction can be specified independently and 

are given as separate time series (typically in hourly resolution). If a portfolio 

cannot be used for load shifting at all in a certain timeframe, both upshift and 

downshift limits are set to zero. 
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Figure 11 shows an example for selecting feasible next states based on the 

assumption of a starting state of (𝑡s = 1, 𝑒 = 3) and a power limit of ±2. Several 

options exist: 

• Balance out the previous load shift and return to 𝑒0. This also resets the 

shift time to zero resulting in the blue transition to state (0, 2). 

• Continue the load shift in the current direction (orange arrows). This 

includes either remaining at the same energy level or further shifting in the 

same (upward) direction. In both cases the shift time is increased and the 

two allowed follow-up states are either (2, 3) or (2, 4). 

• Reverse the load shift (green arrow) with maximum downward power. Due 

to the reversed sign of the energy level 𝑒 < 𝑒0 the shift time is set to 1. 

Other discretised load shift states cannot be reached in this example due to the 

energy and power restrictions and the rules on shift times. Note that the load shift 

states (𝑡𝑠 > 0, 𝑒 = 2) are not available, since the shift time is defined to be 0 at the 

balanced energy level 𝑒0. 

 

Figure 11: Load-shift transitions from starting state (red dot) to available follow-up states indicated 

by arrows on the discretised state grid (shift-times on the x-axis and energy levels on the y-axis); 

unreachable states, e.g., (0,3) or (1,2) not depicted 

In addition to the discussed transitions, the shift time can also be prolonged 

beyond the maximum shift time limit. This can be justified by interpreting the 

controlled load shifting portfolio not as a single device, but a composition of 

multiple devices. Then, the portfolio can be split virtually. Any load shift energy is 

assumed not to be distributed equally across all devices but assigned to only 

some devices within the portfolio. The other devices within the portfolio can then 

be used to counteract the actions of the devices that need to balance out their 

previous shift once reaching maximum shift time. Thus, one part of a portfolio is 

shifted in one direction while the other part is shifted in the other direction. This 
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results in effectively prolonging the current shift cycle. While this results in a net-

zero energy balance, additional costs for the portfolio-internal load shift need to be 

considered. This option to prolong the shift time is also included in AMIRIS. 

However, not more than the maximum power in upward or downward direction can 

be shifted with this operation – otherwise power limits would be violated as shown 

by [43, p. 842]. 

The employed algorithm needs to find the best path across the load shift states 

that does not violate the aforementioned restrictions regarding energy levels, shift 

times and available power. Therefore, dynamic programming is used in the 

following way: Starting at an initial state of the portfolio, the performance of all 

feasible follow-up states is evaluated regarding their strategic target (see following 

subsection on Strategies). Cost and benefits for each transition are added to the 

potential cost and benefits of the follow-up state associated with the next time 

step. Comparison of all feasible transitions and their performance leads to the 

identification of the best choice for each assessed initial state. 

 

Figure 12: Schematic representation of the time intervals for forecast and scheduling 

The result quality of the described algorithm is subject to several parameters that 

can be controlled in the AMIRIS model configuration: the granularity of the energy 

levels, the forecast period and the scheduling period. All of them can have a 

considerable influence on the precision of the results. The granularity of the 

energy levels determines how many different load-shifting options are assessed 

for finding the best transition. For instance, doubling the number of assessed 

energy levels also doubles the precision of the result while the computation time 
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increases by four. The forecast period (see Figure 12) determines the number of 

considered future time steps (starting at the current time t) when optimising the 

dispatch schedule. Any information beyond the forecast horizon is not considered 

during optimisation – a restriction that is also valid for real-world planning 

processes. 

The scheduling period determines the number of future time steps of a dispatch 

plan. A new schedule must be created after the scheduling period has expired. 

The scheduling period can be shorter than the forecasting period (down to an 

extreme of a single time step). In this case the schedule is renewed after the 

scheduling period has passed and allows agents to consider future information not 

considered when the first schedule was created (rolling horizon). 

 

- Strategies 

There are two different strategies available to market load shifting capacities. One 

seeks to minimize system costs while the other aims at maximizing the obtained 

profits. The latter strategy does allow for a consideration of taxes and levies while 

the first one only accounts for system costs. 

The system-cost-minimization strategy requires a perfect forecast of the marginal 

costs of all power plants in the system and their intended bids. This enables the 

strategy to consider any changes of the merit order and associated changes in the 

system cost caused by additional or reduced demand. Variable costs for load 

shifting are considered to add to the system cost as well. Then, the dispatch 

schedule for an associated load shifting portfolio is created in such a way that the 

total system costs are minimized. 

The profit-maximizing strategy also requires a perfect forecast. However, for this 

strategy the power prices including possible price changes resulting from changing 

the load suffice. Marginal cost associated with each bid are disregarded (power 

prices may deviate from the marginal costs in case power plants apply markdowns 

or markups on top of their marginal costs). The profit-maximizing strategy 

calculates the expected revenues from offering capacity to the market. The offered 

price is set to be just above or below the projected clearing price (including 

changes caused by the load shift) in dependence of the shift direction (upwards or 

downwards). The strategy subtracts variable costs, taxes and levies from the 

expected profits and then selects the most profitable path for dispatch and 

associated bids for each time step along the forecasting interval. 

3.3.1.2. Variable market closure lead times 

The day-ahead electricity markets of most European bidding zones hosted by 

EPEX close at 12:00 CET the day before. This means that the gate closure of the 

day-ahead market has a lead time of 12 to 36 hours until realisation of possible 

deliveries. Forecasts for relevant electricity market variables like renewable power 

generation or demand have even greater lead times, since they are required for 
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the bid creation and are thus typically required several hours before gate closure, 

further reducing their accuracy. Figure 13 depicts an example of forecast 

uncertainty derived from ENTSO-E data for renewable feed-in and demand in 

Germany, July 2018. Although the four depicted variables are also subject to 

patterns related to the hour of the day, it becomes clear that their forecast 

uncertainty rises towards more distant times. 

 

Figure 13: Relative forecast error for day-ahead forecasts of demand, wind offshore, wind onshore 

and PV generation in Germany, average of 4 weeks in July 2018; original data from ENTSO-E5 

 

 

5 https://transparency.entsoe.eu 

https://transparency.entsoe.eu/
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Figure 14: Schematic representation of feed-in error consideration in AMIRIS 

 

AMIRIS considers this uncertainty of forecasts. A schematic representation is 

shown in Figure 14. The renewable plant operators deliver perfect information 

about their future feed-in potential to their associated traders. The trading agents 

may then add random errors to the otherwise perfect forecast when creating their 

bids6 in order to simulate real-world forecast uncertainty. These bids (including 

errors) are then forwarded to the energy exchange and influence the day-ahead 

electricity price. Once the bids are awarded by the energy exchange, the traders 

need to compensate for their previous errors. Since AMIRIS does not feature an 

additional intraday market, bidding errors need to be compensated via balance 

energy. The associated costs for balance energy then impact the trader’s profit. 

To simulate the effects of different market closure lead times with a rolling horizon 

model such as AMIRIS (see Section 3.2.1.3), the trader agent’s configuration will 

allow to specify the relative error level for electricity amounts in bids. The relative 

error is represented by a minimum and maximum value for each time segment 

(e.g. hour) of the day and is then randomly chosen by drawing from, e.g., 

Gaussian or Uniform distributions within the bounds corresponding to that time 

segment. 

This approach allows to consider error levels at a specific time of the day to reflect 

the time delta between market closure and specified time of delivery. Longer or 

shorter gate closure lead times can then be emulated by employing higher or 

lower error levels for the bids. This approach also correctly considers the impact of 

the gate closure lead times on electricity prices and trader profits. It is also 

compatible with emulating different implementations of rolling market clearing. 

 

 

6 Trading agents try to sell their fully available quantities at the market. 
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Two examples illustrate the mechanics: To simulate the current market rules with 

12 to 36 hours lead times, one could associate uncertainties corresponding to a 

12+x hour forecast with the first hour of the day, constantly increasing towards the 

final hour of the day with uncertainties corresponding to a 35+x hours forecast lead 

time. Here, x represents the forecast lead time with respect to the moment of gate 

closure. To simulate a market with 6-hour gate closure lead times and a rolling 

market clearing for 4 hours each, the uncertainty at the first hour of the day could 

correspond to a 6+x hour forecast, slightly increase to 9+x hour forecast in the 

fourth hour of the day and then drop again to 6+x hour forecast error levels. This 

pattern is then repeated five more times throughout the day (see also Figure 5). 

3.3.2. MASCEM 

MASCEM [7, 26] was enhanced to incorporate load shifting, load shedding and 

real-time pricing mechanics. The following subsections contain detailed 

explanations of how these features were implemented. 

3.3.2.1. Load Shifting and Shedding 

 

Figure 15: Overview of MASCEM’s load shifting flexibility model 

The incorporation of load shifting and shedding capabilities in MASCEM market 

models has been designed and is being implemented taking advantage of 

aggregators as intermediaries between the market and the consumer and 

prosumer. In this model (see also Figure 15), the aggregator has contracts with 

end-users (consumers/prosumers), which may have a home energy management 

system (HEMS) with different devices with demand response capabilities. For 

demand response, it considers two types of devices, one that allows consumption 

to be shifted to a different period (e.g., washing machines, tumble dryers, or 
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dishwashers), and another with real-time control capabilities where no shifting is 

possible (e.g., lighting system or air conditioners), but only reduction or curtailment 

at the same time. The aggregator is prepared to respond to a flexibility request 

from a Distribution System Operator (DSO) to address local grid congestion or a 

Balance Responsible Party (BRP) in need of energy to balance its portfolio, who 

pays monetary compensation for each power unit of flexibility provisioned. The 

monetary compensation is calculated according to the model described below, 

aiming at minimizing the costs of the DSO/BRP. It also makes use of a flexibility 

management system to re-schedule appliances and match, as close as possible, 

the flexibility curve procured by the DSO. This flexibility curve results from the 

power network validation performed by the DSO after the market results are 

achieved. Once the market results at a certain time horizon (e.g. day-head) are 

determined according to the forecasts available at that time, the DSO will validate 

the power network, and, if problems (e.g. congestion) are identified, a request for 

flexibility is launched for these specific time periods. In this way, it is possible to re-

schedule the necessary amount of consumption in order to avoid the foreseen 

network problems, at the cost of paying a monetary compensation to the target 

consumers. 

In addition, end-users have the capability of registering devices for flexibility 

provision and configuring their preferences regarding allowed shiftable times, 

expected remuneration due to flexibility activation, a priority of the available 

devices for activation, amongst others. 

Besides, two assumptions are necessary when addressing the model. The first 

one is that all the required infrastructure is available for achieving the management 

and control of load, and the second is that the DSO/BPR and the aggregator have 

access to forecasts of baseline power consumption provided by a third party. 

- Algorithm 

The problem can be modelled with mixed-integer non-linear programming in which 

the aggregator strives to match a flexibility request from the DSO/BRP, paying a 

remuneration to the households participating in the demand response program 

according to their preferences and the modification of their baseline profile. 

In this model, let 𝐴 = {1, … , 𝑁𝐼} be the set of all appliances with shifting capabilities, 

and 𝐵 = {1, … , 𝑁𝐽} the set of all appliances with real-time control capabilities 

registered in the aggregator's EMS. Each appliance with shifting capabilities is 

characterized by tuple 𝐴𝑖 = [𝑡start(𝑖), 𝑂(𝑖), 𝑝𝐴(𝑖,𝑘)] ∈ 𝐴, where 𝑡start(𝑖) represents the 

baseline starting period of functioning program of appliance 𝑖, 𝑂(𝑖) is the time 

duration of a given program of appliance 𝑖, and 𝑝𝐴(𝑖,𝑘) is the power profile of a 

given functioning program of appliance 𝑖 defined in the interval 𝑘 = [1, … , 𝑂(𝑖)]. 

On the other hand, each appliance with real-time control is characterized by a 

tuple 𝐵𝑗 = [𝑝B(𝑗), 𝐼start(𝑗,𝑡)] ∈ 𝐵, where 𝑝𝐵(𝑗) is the maximum power of appliance 𝑗, 
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and Istart(𝑗,𝑡) is a number in the range [0,1] representing a percentage of the 

baseline consumption intensity of appliance 𝑗 in time 𝑡. 

It is assumed that users have access to a HEMS interface in which they can 

configure their preferences. A tuple Pref𝐴(𝑖) = [𝑡allow(𝑖), 𝐷allow(𝑖), 𝐶𝐴(𝑖)] is defined by 

the user, specifying the start of the allowed time window 𝑡allow(𝑖), the window 

duration 𝐷allow(𝑖) for aggregator's control access, and the expected remuneration 

𝐶𝐴(𝑖) (in EUR) to be received if device 𝑖 is shifted from the baseline starting period 

𝑡start(𝑖) to a different period in the allowed window. With these parameters, the 

shifting periods of devices type A are constrained by the user as follows: 

𝑡allow(𝑖) ≤ 𝑡new(𝑖) ≤ 𝑡allow(𝑖) + 𝐷allow(𝑖) (1) 

where 𝑡new(𝑖) is the new starting period of appliance 𝑖. 

Similarly, a tuple Pref𝐵(𝑗) = [𝑡allow(𝑗), 𝐷allow(𝑗), 𝐼min(𝑗), 𝐼max(𝑗), 𝐶𝐵(𝑗)], defines the 

allowed periods where intensities of appliances of type B can be modified 

(i.e., 𝑡allow(𝑗), 𝐷allow(𝑗)), the maximum allowed reduction/increase of consumption of 

such devices (i.e., 𝐼min(𝑗), 𝐼max (𝑗)), and the expected remuneration 𝐶𝐵(𝑗) (in EUR 

per kWh) to be received for the amount of power reduction/increase of device 𝑗 in 

the allowed window. Thus, the modification of power profiles of devices type B is 

constrained by the user as follows: 

𝐼min(𝑗) ≤ Inew(𝑗) ≤ 𝐼max(𝑗) (2) 

𝐼new(𝑗,𝑡) = {
𝐼mod(𝑗,𝑡)     if    𝑡allow(𝑗) ≤ 𝑡 ≤ 𝑡allow(𝑗) + 𝐷allow(𝑗) 

𝐼start(𝑗,𝑡)    otherwise                                                    
 (3) 

where Inew(𝑗,𝑡) and 𝐼mod(𝑗,𝑡) are variables in the range [0,1] for each 𝑡 ∈ 𝑁𝑇 defining 

a modification (in percentage) of the baseline profile and  𝐼start(𝑗,𝑡) being a number 

in the range [0,1] (representing a percentage of the consumption). 

The flexibility provisioned by the aggregator (i.e., 𝐹agg(𝑡)) is defined as the 

difference between the baseline profile, and the new scheduled profile as follows: 

𝐹agg(𝑡) = 𝑃base(𝑡) − 𝑃flex(𝑡) (4) 

where 𝑃base(𝑡) is the baseline profile and 𝑃flex(𝑡) is the resulting profile after re-

scheduling appliances? Notice that a third party should determine the baseline 

profile since it represents the expected power consumption of the appliances if no 

re-schedule or modification is performed. It is assumed that the aggregator has the 

information regarding the baseline consumption of each household, and it uses 

this information to determine the flexibility offer. 

Equations (5), (6), (7) are used to represent the baseline profile: 

𝑃base(𝑡) = ∑ 𝐴base(𝑖,𝑡)

𝑁𝐼

𝑖=1

+ ∑ 𝐵base(𝑗,𝑡)

𝑁𝐽

𝑗=1

 (5) 
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Abase(𝑖,𝑡) = = {

𝑝A(𝑖,𝑡−𝑡start(𝑖)+1)     if 

𝑡start(𝑖) ≤ 𝑡 ≤ 𝑡start(𝑖) + 𝑂(𝑖) − 1 

0         otherwise

 (6) 

𝐵base(𝑗,𝑡) = 𝑝𝐵(𝑗) ∗ 𝐼start(𝑗,𝑡) (7) 

where Eq. (5) captures the aggregated power of all appliances at a given time 𝑡. 

Eq. (6) captures the power of shifting appliance 𝑖 at a given time 𝑡, 𝑡𝑠𝑡𝑎𝑟𝑡(𝑖) is the 

baseline starting period of operation, and 𝑂(𝑖) is the number of periods of the 

operation program of device 𝑖 (e.g., considering 15 min periods and a 𝑡 = 1 

corresponding to 00:00 am, 𝑡 = 2 to 00:15 am, 𝑡 = 3 to 00:30 am, etc.; a washing 

machine can start its baseline operation at 𝑡start(𝑖) = 5 – corresponding to 01:00 

am, and have a duration of operation program of 𝑂(𝑖) = 9 – which means that the 

machine operates for 135 min and will finish its operation at period 𝑡start(𝑖) + 𝑂(𝑖) =

14 –corresponding to 03:15 am). Eq. (7) captures the baseline power of appliance 

𝑗 at time 𝑡 considering intensity Istart(𝑗,𝑡) being a number in the range [0,1]. Notice 

that variables 𝑡start(𝑖) and Istart(𝑗,𝑡) are input parameters to represent baseline 

consumption patterns. 

On the other hand, the aggregator determines new starting periods 𝑡new(𝑖) for the 

appliances with shifting capabilities and new intensities Inew(𝑗,𝑡) for the appliances 

with reduction capabilities. Eqs. (8)-(10) represent the determination of the new 

consumption profile: 

𝑃flex(𝑡) = ∑ 𝐴flex(𝑖,𝑡)

𝑁𝐼

𝑖=1

+ ∑ 𝐵flex(𝑗,𝑡)

𝑁𝐽

𝑗=1

 (8) 

Aflex(𝑖,𝑡) = {

𝑝𝐴(𝑖,𝑡−𝑡new(𝑖)+1)     if 

𝑡new(𝑖) ≤ 𝑡 ≤ 𝑡new(𝑖) + 𝑂𝑡(𝑖) − 1 

0         otherwise

 (9) 

𝐵flex(𝑗,𝑡) = 𝑝𝐵(𝑗) ∗ I𝑛𝑒𝑤(𝑗,𝑡) (10) 

where Eq. (8) represents the new consumption profile after determining optimal 

starting periods 𝑡new(𝑖) (see Eq. (9)) and intensities Inew(𝑗,𝑡) (see Eq. (10)) for all 

the appliances managed by the aggregator. 

In order to maximize the aggregator’s profits, the objective function can be 

modelled as the minimization of the remuneration to be paid to the households 

plus a penalty for the mismatch of flexibility procured by the DSO/BRP. The goal is 

therefore, to decide on the optimal monetary compensation to provide to 

consumers, while adjusting the flexibility/shifting of each device according to the 

needs of the DSO/BRP and the possibilities specified for each device, as follows: 

Minimise 𝑓 = (∑ Rem𝐴(𝑖)
𝑁𝐼
𝑖=1 + ∑ Rem𝐵(𝑗)

𝑁𝐽

𝑗=1
) + 𝐶DSO ∙ 𝐹match (11) 
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Rem𝐴(𝑖) = {
𝐶𝐴(𝑖)     if 𝑡start(𝑖) ≠ 𝑡new(𝑖)

0      otherwise
 

 

Rem𝐵(𝑗) = 𝐶𝐵(𝑗) ∙ ∑|𝐵base(𝑗,𝑡) − 𝐵flex(𝑗,𝑡)|

𝑁𝑇

𝑡=1

 

 

𝐹match = ∑|𝐹agg(𝑡) − 𝐹DSO(𝑡)|

𝑁𝑇

𝑡=1

 

 

where the first term of Eq. (11) corresponds to the monetary compensation paid 

for shifting device 𝑖 (a flat payment 𝐶𝐴(𝑖) in EUR is considered despite how many 

periods the device is shifted); the second term corresponds to the remuneration 

given for the modification of the baseline profile of devices type B (where 𝐶𝐵(𝑗) is a 

compensation paid in EUR/kWh modification); and the third term corresponds to a 

penalty, 𝐶DSO in EUR/kWh, paid for the mismatch between the flexibility procured 

by the DSO (𝐹DSO(𝑡)) and the flexibility provided by the aggregator (𝐹agg(𝑡)) in each 

period 𝑡. 

3.3.2.2. Real Time Pricing and Battery Storage Systems 

MASCEM features new implementations for scheduling of battery energy storage 

(BES) in joint energy and ancillary services markets. It consists of an energy-

constrained self-scheduling model for owners/participation of BES, focusing on the 

provision of temporal flexibility considering real-time pricing. 

The proposed model is formulated based on the profit maximization of BES within 

the expected life cycle. In the short-term scheduling, the lifetime and capacity 

degradation of batteries are modelled by the energy throughput concept, which is 

basically the total amount of energy a battery can be expected to store and deliver 

over its lifetime [44]. Therefore, the optimal scheduling is determined based on the 

storing and delivering energy guaranteed by the manufacturer, the planned 

lifetime, and the energy constraint of batteries. 

For this purpose, two assumptions must be considered. Firstly, it is assumed that 

BES can buy/sell its energy from the energy market in charging/discharging 

modes, and bid in energy and ancillary services markets, simultaneously. 

Secondly, BES are assumed to be able to participate in down and up-regulation 

services in charging and discharging modes, respectively. In other words, when in 

charging/discharging mode, the battery can be used as a load/generation unit, 

respectively. Considering that an up-regulation situation is usually happening in a 

high price period, and the market operator shall increase the generation or 

decrease consumption, in order to prevent the dissatisfaction of consumers, the 

market operators prefer not to use load reduction or load shedding. Moreover, the 

renewable resources’ owner also prefers to sell its energy within high price 

periods. Therefore, the battery is supposed to participate in up-regulation service 

in the discharging mode. 
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In opposition to that, down-regulation situations are usually happening in low price 

periods. Subsequently, the market operator shall decrease generation or increase 

consumption. In contrast to the previous case, the renewable resources’ owner 

prefers to purchase more energy in low price periods. Thus, the system operator 

prefers to increase consumption during the low-price period to optimize the load 

profile. 

 

- Algorithm 

Before presenting the algorithm, the following nomenclature must be taken into 

consideration. 

Indices and Sets 

,t T
 

Index and set of time 

,j J
 

Index and set of intra-hourly  

,l NL
 

Index and set of BES lifetime 

Constants and Parameters 

RatedE
 

Rated capacity of BES (MWh) 

minE
 

Minimum capacity of BES (MWh) 

SE
 

Price of selling to the energy market ($/MWh) 

BE
 

Price of buying from the energy market ($/MWh) 

DR
 

Down regulation price in regulation market ($/MWh) 

UR
 

Up regulation price in regulation market ($/MWh) 

CH
 

Energy charging price in regulation market ($/MWh) 

RT
 

Real-time energy price in regulation market ($/MWh) 

ChRR  Charging ramp-rate (MW) 

DchRR  Discharging ramp-rate (MW) 

*M  Large enough constant 

LTH  Lifetime throughput energy (MWh) 

ATH  Annual throughput energy (MWh/year) 


 Annual degradation of BES capacity (%) 

W Working days per year (day) 

  Variation interval of uncertain parameter 

  Confidence level of uncertain parameter 
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r Interest rate (%) 

Decision variables 

,E chE
 

Charging bid in energy market (MWh) 

,E dchE
 

Discharging bid in energy market (MWh) 

EE
 

Energy bid in energy market (MWh) 

RSE
 

Energy bid in regulation service (MWh) 

URE
 

Energy bid in up-regulation market (MWh) 

DRE
 

Energy bid in down-regulation market (MWh) 

E Stored energy of BES (MWh) 

, 
 

Lagrange multiplier 

*A
 

Auxiliary variable for linearization 

Binary Variables 

U  Charging/discharging status (𝑈 = 1 for discharging, 𝑈 = 0 for down charging) 

  Regulation service status (𝜐 = 1 for up regulation, 𝜐 = 0 for down regulation) 

Based on the nomenclature presented, for the energy market, the total traded 

energy of BES in the operational period 𝑡 can be formulated by the system of 

equations (1) consisting of equations (1a) to (1f). It shall be noted that the binary 

variable 𝑈 represents charging (𝑈 = 0) or discharging mode (𝑈 = 1) of the battery. 

The second term of (1a) is nonlinear. Therefore, via the auxiliary variable 𝐴𝐸 and 

big M theory [45], Δ𝐸𝐸 is linearized by constraints (1b)-(1e).  

, ,

, , ,

.(1 ) .
:

.( )

E E ch E dch

t t t t t

E ch E dch E ch

t t t t

E E U E U
t

E U E E

 =  − −


=  −  + 
                                       (1a) 

, :E E ch E

t t t
E E A t =  − 

                                                    (1b) 

1. : ,E E

t t t
A M U t 

                                                       (1c) 

, , 2: ,E E dch E ch

t t t t
A E E t  +  

                                                (1d) 

, , 3.(1 ) : ,E E dch E ch E

t t t t t
A E E M U t  +  − − 

                                      (1e) 

, ,, , 0 :E E ch E dch

t t t
A E E t   

                                                   (1f) 

It should be noted that charging and discharging efficiencies are fixed terms and 

they do not have any impact on the optimization procedure. Therefore, without 

loss of generality, it is supposed that charging and discharging efficiencies are 

equal to one. 
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Same as (1), the energy market payoff is linearized by the auxiliary variable 𝐴𝑃𝐸 

and big value 𝑀𝑃𝐸 as represented in the following system of equations (2): 

( )

, ,

1

, , ,

1

. . . .(1 )

. . . .

T
E SE E dch BE E ch

t t t t t t

t

T
SE E dch BE E ch BE E ch

t t t t t t t

t

Pay E U E U

E E U E

 

  

=

=

=  −  −

=  +  − 




                             (2a) 

,

1

.
T

E PE BE E ch

t t t

t

Pay A E
=

= − 
                                                 (2b) 

4. : ,PE PE

t t t
A M U t 

                                                      (2c) 

, ,. . :PE SE E dch BE E ch

t t t t t
A E E t   +  

                                            (2d) 

, ,. . .(1 ) :PE SE E dch BE E ch PE

t t t t t t
A E E M U t   +  − − 

                                 (2e) 

0 :PE

t
A t 

                                                              (2f) 

The participation level of BES in the reserves ancillary service depends on the 

regulation incentives and prices as BES determines the up and down regulation 

bids. Moreover, BES can participate in up/down regulation in charging/discharging 

mode, respectively. The bidding strategy of BES in the regulation market can be 

represented as follows: 

, , , , ,
.(1 ) . : ,RS DR UR

t j t j t j t j t j
E E E t j  =  − −  

                                        (3a) 

, ,
, 0 : ,DR UR

t j t j
E E t j    

                                                    (3b) 

The status of BES in up regulation/down regulation service is specified by the 

binary variable 𝜐 (for 𝜐 = 1 up-regulation, and 𝜐 = 0 for down-regulation), and 

Δ𝐸𝑡,𝑗
𝑅𝑆   is linearized as follows: 

, , , , ,

, ,

.( )
: ,

RS DR DR UR

t j t j t j t j t j

DR RS

t j t j

E E E E
t j

E A

 =  −  +
 

=  −
                                    (4a) 

5

, , ,
. : , ,RS RS

t j t j t j
A M t j   

                                                  (4b) 

6

, , , ,
( ) : , ,RS DR UR

t j t j t j t j
A E E t j  +  

                                             (4c) 

7

, , , , ,
( ) .(1 ) : , ,RS DR UR RS

t j t j t j t j t j
A E E M t j   + − −  

                                    (4d) 

,
0 : ,RS

t j
A t j  

                                                          (4e) 

In regulation service, BES receives the capacity and deployment payments, which 

are calculated based on the accepted capacity and deployed energy in the 

ancillary service market, respectively. 
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Another assumption is that all the capacity of regulation bid will be deployed by the 

local market operator in the real-time operation. Moreover, it is supposed that BES 

can participate in up and down-regulation services by discharging and charging of 

energy, respectively. Therefore, BES income in from the regulation market is: 

( ) ( )( ), , , , , , , ,

1 1

. .(1 ) . .
T J

RS DR CH DR UR RT UR

t j t j t j t j t j t j t j t j

t j

Pay E E     
= =

= −  − + + 
                    (5) 

Since (5) is nonlinear, it is rewritten as follows: 

( ) ( ) ( ), , , , , , , , , , ,

1 1

. . . . .
T J

RS DR CH DR CH DR DR UR RT UR

t j t j t j t j t j t j t j t j t j t j t j

t j

Pay E E E       
= =

= −  − −  + + 
           (6) 

and the nonlinear parts are linearized via big M reformulations. Therefore: 

( ), , , , ,

1 1

.
T J

RS DR CH DR DR UR

t j t j t j t j t j

t j

Pay E A A 
= =

= −  − +
                                    (7a) 

8

, , ,
. : , ,DR RG

t j t j t j
A M t j   

                                                  (7b) 

9

, , ,
. : , ,UR RG

t j t j t j
A M t j   

                                                  (7c) 

( ), , , ,
. : ,DR CH DR DR

t j t j t j t j
A E t j  −   

                                            (7d) 

( ), , , ,
. : ,UR UR RT UR

t j t j t j t j
A E t j  +   

                                             (7e) 

( ), , , , ,
. .(1 ) : ,DR CH DR DR RG

t j t j t j t j t j
A E M t j   −  − −  

                                 (7f) 

( ), , , , ,
. .(1 ) : ,UR UR RT UR RG

t j t j t j t j t j
A E M t j   +  − −  

                                  (7g) 

, ,
, 0 : ,DR UR

t j t j
A A t j  

                                                       (7h) 

Considering that charging price can be defined as the price of consuming energy 

in real-time for charging of the battery that is deployed in down regulation, it shall 

be noted that the charging price can be specified based on the real-time price, 

which is greater than the regulation capacity price (𝜋 
𝐶𝐻 > 𝜋𝐷𝑅). 

Continuous charging and discharging cycles of BES could decrease its lifetime 

and the expected profit, consequently. Therefore, the lifespan is a crucial 

parameter that shall be considered in the scheduling of BES. It shall be noted that 

Depth-of-Discharge (DOD) is the common method for modeling the lifetime of 

BES. DOD determines the remain lifetime based on the percentage of the energy 

that has been discharged from the fully rated capacity, which can be seen in 

% 100
Rated

t

t Rated

E E
DOD

E

−
= 

                                              (8) 
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The main drawback of DOD is that it does not reflect the BES capacity 

degradation over the lifetime. Moreover, manufacturers provide the allowable life 

cycle of batteries based on DOD that represents discharged depth from the fully 

charged state. Evidently, there is no guarantee in hourly scheduling of BES that 

the discharge cycles are started from the fully charged state. Therefore, the 

energy throughput concept is proposed by manufacturers to solve this problem. 

The energy throughput is the total amount of energy that can be charged and 

discharged within the lifetime of batteries, and it is not affected by the depth of 

charge or discharge. According to the battery energy throughput and planned 

lifetime, the energy constraint and optimal scheduling of BES within the planning 

period can be determined. According to the throughput concept, the lifetime of 

BES can be calculated as follows: 

LT

AT

H
NL

H
=

                                                        (9) 

where, 𝐻𝐿𝑇 and 𝐻𝐴𝑇 are the lifetime energy and the annual energy throughputs, 

respectively. 

Another assumption was that initial and final energy levels of BES are equal within 

the daily planning period. Therefore, the daily energy constraint can be 

represented as: 

0t t T
E E

= =
=

                                                              (10a) 

, ,

, , , ,

1 1 1 1

.(1 ) .(1 ) . .
T J T J

E ch DR E dch UR

t t t j t j t t t j t j

t j t j

E U E E U E
= = = =

   
 − +  − =  +    
   

                    (10b) 

( ), 1

, ,

1 1

0:
T J

E ch E DR RS

t t t j t j

t j

E A E A
= =

 
 − +  − = 
 

                                        (10c) 

Hence, the annual throughput energy or delivered energy can be calculated as: 

( ),

, ,

1 1

. . .
T J

AT E dch UR

t t t j t j

t j

H W E U E
= =

 
=  +  

 
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 
= + 
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                                          (11b) 
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t t t
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                                               (11c) 
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, , ,
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t j t j t j
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                                               (11d) 
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                                                 (11e) 
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15

, , , ,
.(1 ): , ,RAT UR AT

t j t j t j t j
A E M t j   − −  

                                       (11h) 

,
, 0 : ,EAT RAT

t t j
A A t j  

                                                    (11i) 

where, W is average working days per year as the daily optimal scheduling of BES 

was calculated and then extend to the whole period. 

The main operational constraints of BES are capacity and ramp-rate. The stored 

energy of BES can be represented as follows: 

( ), , 1 , , 1 ,

,

, 1 , , 1 , ,

.
: ,

( ).( )

E RS

t j t j t j t j t t j

E ch E DR RS

t j t j t j t t t j t j

E E S S E E
t j

E S S E A E A

− −

− −

= + −  + 
 

= + −  − +  −
                     (12) 

where, the term 𝑆𝑡,𝑗 − 𝑆𝑡,𝑗−1 represents the duration of intra-hourly time step. The 

maximum and minimum capacity limitations of BES are represented by (13a) and 

(13b), respectively. Moreover, the annual degradation of BES capacity is modelled 

by (13c). 

16

, ,
: , ,Rated

t j l t j
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min 17

, ,
: , ,

t j t j
E E t j                                                        (13b) 

1
(1 . ) : 1,...,Rated Rated
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E E l l NL

−
= −  =

                                            (13c) 

In addition, charging and discharging ramp-rate constraints are represented by 

(14a) and (14b), respectively. 
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According to the presented payment functions, the deterministic objective function 

or overall profit can be written as follows: 
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 (15) 

As mentioned before, the prices of energy, participation in the regulation service, 

deployment in real-time market and charging (𝜋𝑡
𝑆𝐸, 𝜋𝑡

𝐵𝐸, 𝜋𝑡,𝑗
𝐷𝑅, 𝜋𝑡,𝑗

𝑈𝑅, 𝜋𝑡,𝑗
𝑅𝑇 and 𝜋𝑡,𝑗

𝐶𝐻) 

are considered as the uncertainty resources. The realizations of uncertain 

parameters or confidence intervals are represented by (16). 
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                                           (16e) 
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                                           (16f) 

0 , , , , , 1SE BE DR UR CH RT                                                  (16g) 

According to the concept of Robust Optimization (see [46]), when taking into 

account the confidence intervals (16), objective function (15) can be reformulated 

as follows: 
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Considering that (2d)-(2e) and (7d)-(7g) depend on the uncertainty parameters 

and that in (15) uncertainty was not considered, (2d)-(2e) and (7d)-(7g) were 

replaced by (17b)-(17g). 

In the presented objective function, the lower bound of minimization is achieved for 

the minimum selling prices (𝜋𝑡
𝑆𝐸, 𝜋𝑡,𝑗

𝐷𝑅, 𝜋𝑡,𝑗
𝑈𝑅, and 𝜋𝑡,𝑗

𝑅𝑇) and maximum buying and 

charging prices (𝜋𝑡
𝐵𝐸 and 𝜋𝑡,𝑗

𝐶𝐻). Therefore, the worst-case realizations of uncertain 

parameters within the variation interval are as follows: 
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Accordingly, the Max-Min problem (17) can be converted to the Max optimization 

problem, as follows: 
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3.3.3. RESTrade 

Most of the European electricity markets encompass the aFRR capacity market. 

This market closes at the day D, and requires the forecast of the maximum 

consumption and the expected production from traditional dispatchable power 

plants and vRES, computing the hourly capacity aFRR requirements for the next 

day (D+1). Furthermore, all producers with technical capability submit capacity 

bids for the next 24 hours of the next day (D+1). All players (supplier and 

consumer) participate under the same rules, whether they are conventional energy 

source producers and easily controlled, or if they are producers who use 

stochastic sources, such as the wind and solar (photovoltaic) energy. 

To participate in this market, numerical weather prediction models (NWP) like the 

Fifth-generation model (also known as MM5 [48]) are used by most of the players 

[49]. Notwithstanding the developments observed in the physical 

parameterizations of these models as well as the initial and boundary conditions 

(IBC), systematic errors (phase and amplitude) still persist due to the chaotic 

nature of the atmosphere, in which small (initial) errors necessarily grow in the 

deterministic chaotic system and eventually result in the deterioration of the 

forecast for a long time horizon [50] (Figure 16).  

 

 

Figure 16: Illustration of the increase of the wind forecast error over a the time horizon of 36 hours; 

adapted from: [47] 

One of the main limiting factors of NWP accuracy are the IBC used by the 

mesoscale models [52, 53]. These models use the Navier-Stokes equations 

resulting to physical parameterizations and the IBC data [48]. Mesoscale models 

have the ability to describe the behaviour and evolution of air masses and treat 

explicitly the inherent phenomena of atmospheric turbulence and stratification as 

well as other types of nonlinear atmospheric phenomena, up to a maximum spatial 
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resolution of 1×1km [53]. For forecast application, these IBC data are typically 

available from global models like the Global Forecast System (GFS) [54], at 00, 

06, 12, and 18 UTC. Currently, to participate in the day-ahead market, producers 

need to use the IBC from 06 UTC, representing a time gap of 18 hours interval 

between the forecast and the first delivery hour (Figure 17). 

 

Figure 17: Timeframes for day-ahead market:A) current design; B) and C) proposed designs; 

adapted from [51] 

For wind power, some authors, e.g. [8], showed that reducing this gap can enable 

increasing this technology’s value in the day-ahead market due to a significant 

reduction in the forecast errors leading to a reduction in the flexibility needed. The 

same is true when allowing this technology to effectively participate in the 

balancing markets. The main motivation for reducing the time gap is closely 

related to the IBC data availability. Particularly, the motivation is exploring the 

benefit of using the 12 and 18 UTC data available from global models to feed the 

power forecast systems in an electricity market environment. An additional period 

of two hours is considered to run the models and perform all required steps to 
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obtain the forecast/bids. Thus, the new gate closure should be at 14 UTC and 20 

UTC. 

In TradeRES project, the certainty gain effect [51] of using close to real time IBC 

data will be assessed and extended to other vRES players and to the demand-

side. Therefore, the following specifications of the balancing markets are going to 

be applied within the project: 

• Rolling gate closures: Instead of a single day-ahead aFRR capacity market, 

considering several hourly or 15-minutes trades during the day can be 

beneficial to improve the aFRR capacity procurement and to enable an 

effective participation of vRES in the balancing markets avoiding large 

quantities of deviations and energy curtailments; 

• Variable market closures lead time: The procurement of aFRR capacity 

depends on the forecasts of the maximum expected consumption and 

vRES productions, so shorter lead times between bidding and delivery of 

capacity can improve the aFRR requirements, increasing its efficient use. In 

the case of mFRR energy markets, shorter lead time between bidding and 

delivery of energy may enable an efficient participation of vRES in these 

markets, contributing to reduce the vRES deviations and/or curtailments. 
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4. Conclusion 

This report describes implementations of temporal flexibility options that either i) 

were available in the agent-based electricity market models AMIRIS, MASCEM or 

RESTrade prior to the start of the research project TradeRES or ii) were 

implemented within the course of the TradeRES project. Other reports focussing 

on sectoral or spatial flexibility options accompany this document. 

The ability to “Trade with shorter time units” was available in all considered models 

before the start of the project. Representations of further temporal flexibility 

options like 

• Load shedding, 

• Electricity storage, 

• Rolling market clearing, 

• Real-time pricing and, 

• Variable market closure lead times 

were also already available in some of the models. Those aspects were introduced 

to some ABM of TradeRES not yet having those modelling capabilities. In addition, 

some existing implementations were enhanced during the course of the project. 

“Load shifting” was not implemented in any of the considered ABM models before 

the start of TradeRES and was now introduced to MASCEM and AMIRIS. 

Details of all feature implementations in the respective ABMs were explained 

thoroughly in the previous chapter. The selection of temporal flexibility options to 

implement was made with regard to a predominantly temporal characteristic, a 

contribution to TradeRES’ assessment of market designs, and the feasibility to be 

implemented in at least one of the ABMs during the project’s lifetime. The choices 

follow the capabilities of each model and aim to fully utilise the joint model suite to 

be developed also in this work package of TradeRES (see also [55]). Albeit there 

is no additional report planned to discuss further model improvements, some of 

the mentioned features might be further extended or improved over the course of 

the project. Other temporal flexibility options not yet considered might also be 

integrated if they facilitate the assessment of market designs or are requested by 

stakeholders participating in the project, provided resources allow to do so. 

The implementations of the temporal flexibility options will be necessary for the 

model-based analyses within the case studies of TradeRES Work Package 5. 

There, the role of different flexibility options and the impacts of different market 

designs to address the main objectives of a future European energy system will be 

studied. To enable a joint assessment of the different flexibility options and to 

consider short-term decisions along with long-term investments, the TradeRES 

models will be coupled in Task 4.3 of Work Package 4. This endeavour will lead to 

an open-access market simulation toolbox comprising many different assessment 

possibilities that can be used for comprehensive market design studies. 
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